【题目】对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 017次操作后得到的数是( )
A. 25 B. 250
C. 55 D. 133
科目:高中数学 来源: 题型:
【题目】扬州瘦西湖隧道长米,设汽车通过隧道的速度为米/秒.根据安全和车流的需要,当时,相邻两车之间的安全距离为米;当时,相邻两车之间的安全距离为米(其中是常数).当时,,当时,.
(1)求的值;
(2)一列由辆汽车组成的车队匀速通过该隧道(第一辆汽车车身长为米,其余汽车车身长为米,每辆汽车速度均相同).记从第一辆汽车车头进入隧道,至第辆汽车车尾离开隧道所用的时间为秒.
①将表示为的函数;
②要使车队通过隧道的时间不超过秒,求汽车速度的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是 .(填序号)
①当0<CQ<时,S为四边形;
②当CQ=时,S为等腰梯形;
③当CQ=时,S与C1D1的交点R满足C1R=;
④当<CQ<1时,S为六边形;
⑤当CQ=1时,S的面积为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线相交于,两点,且(为坐标原点),求;
(3)在(2)的条件下,求以为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,为其导函数,且时有极小值-9.
(1)求的单调递减区间;
(2)若,,当时,对于任意,和的值至少有一个是正数,求实数的取值范围;
(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的三个顶点,,,其外接圆为.
(1)求的面积;
(2)若直线过点,且被截得的弦长为2,求直线的方程;
(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点的线段的中点,求的半径的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)的一系列对应值如表:
(1)根据表格提供的数据求函数的一个解析式;
(2)根据(1)的结果:
①当时,方程恰有两个不同的解,求实数的取值范围;
②若,是锐角三角形的两个内角,试比较与的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com