精英家教网 > 高中数学 > 题目详情
已知实数x,y,z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是7,求a的值.
分析:由柯西不等式:[x2+(2y)2+(3z)2][12+(
1
2
)2+(
1
3
)2]
≥(x+
1
2
×2y+
1
3
×3z)2
,可得出x+y+z的最大值,从而可根据最大值为7,建立关于a的方程解出a值即可.
解答:解:由柯西不等式:[x2+(2y)2+(3z)2][12+(
1
2
)2+(
1
3
)2]
≥(x+
1
2
×2y+
1
3
×3z)2

49
36
a≥(x+y+z)2
(a>0),
-
7
a
6
≤x+y+z≤
7
a
6

∵x+y+z的最大值是7,
7
a
6
=7
,得a=36.
x=
36
7
y=
9
7
z=
4
7
时,x+y+z取最大值,因此a=36.
点评:本题考查了柯西不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y,z满足x+y+2z=1,x2+y2+2z2=
1
2
,则z的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳一模)已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为
1
14
1
14

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:填空题

已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为______.

查看答案和解析>>

同步练习册答案