精英家教网 > 高中数学 > 题目详情

集合A={x||x-2|≤2},B={x|x2-6x+5<0},则CR(A∩B)=________.

(-∞,1]∪(4,+∞)
分析:由绝对值不等式的解法,可先求出集合A,由二次不等式的解法再求出集合B,求出A∩B后,根据补集的运算法则,
易求出CR(A∩B).
解答:∵集合A={x||x-2|≤2}=[0,4]
B={x|x2-6x+5<0}=(1,5),
∴A∩B=(1,4]
∴CR(A∩B)=(-∞,1]∪(4,+∞)
故答案为:(-∞,1]∪(4,+∞)
点评:本题考查的知识点是集合的交、并、补混合运算,其中根据不等式的解法求出集合A、B是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>1},B={x|x2-2x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)1、已知全集∪=R,集合A={x|x2≤4},B={x|x<1},则集合A∪?UB等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},则集合A∩B=(  )
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步练习册答案