精英家教网 > 高中数学 > 题目详情

【题目】若函数在其图象上存在不同的两点,其坐标满足条件: 的最大值为0,则称为“柯西函数”,则下列函数:① :②:③:④.

其中为“柯西函数”的个数为( )

A. 1B. 2C. 3D. 4

【答案】B

【解析】

由柯西不等式得对任意的实数都有≤0,

当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.再利用柯西函数的定义逐个分析推理得解.

由柯西不等式得对任意的实数都有≤0,

当且仅当时取等,此时即A,O,B三点共线,

结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.

,画出f(x)在x>0时,图像若f(x)与直线y=kx有两个交点,则必有k≥2,此时,,所以(x>0),此时仅有一个交点,所以不是柯西函数;

,曲线过原点的切线为,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B与O共线,所以函数不是;

;④.显然都是柯西函数.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温oC)

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为15oC,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取一天,若已知所选取该天的热奶茶销售杯数大于120,求所选取该天热奶茶销售杯数大于130的概率.

参考数据:.参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,该三棱锥的表面积是   

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中,分别是上的点,且,将沿折起到的位置,使,如图2

1)求证:平面

2)若的中点,求与平面所成角的大小;

3)线段上是否存在点,使平面与平面垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过焦点F的直线l与抛物线分别交于AB两点,O为坐标原点,且.

(1)求抛物线的标准方程;

(2)对于抛物线上任一点Q,点P2t0)都满足|PQ|≥2|t|,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Ax1y1),Dx2y2)其中(x1x2)是曲线y29xy≥0).上的两点,AD两点在x轴上的射影分别为点BC|BC|3

(Ⅰ)当点B的坐标为(10)时,求直线AD的方程:

(Ⅱ)记AOD的面积为S1,梯形ABCD的面积为S2,求的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数(0,)为型函数,共中

(1)若型函数,求函数的值域;

(2)若型函数,求函数极值点个数;

(3)若型函数,在上有三点A、B、C横坐标分別为,其中,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.

查看答案和解析>>

同步练习册答案