精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

解:(1)如图所示,建立空间直角坐标系,
则A(0,0,0),P(0,0,4),B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2)
=(-2,-2,2),=(0,2,2),
=-4+4=0,∴CM⊥AM
∵PA=AD,M为PD的中点,∴AM⊥PD
∴AM⊥平面PCD,AM?平面PAB,
∴平面PAB⊥平面PCD
(2)设=(x,y,z)是平面ACM的法向量,则,令z=-1,得=(-2,1,-1)
=(-2,0,0)
设直线CD与平面ACM所成角为α,则sinα==
(3)∵AN⊥NC.在Rt△PAC中,PA2=PN×PC,PC=6,∴PN=,则NC=PC-PN==,∴所求距离等于点P到平面ACM距离的
设点P到平面ACM距离为h,则h=||==
∴点N到平面ACM的距离为
分析:(1)建立空间直角坐标系,利用向量坐标运算证明即可.
(2)求出平面的法向量,利用向量数量积运算公式,求解.
(3)根据AN⊥PC,利用射影定理求出,再利用公式求出P的平面的距离,然后求N到平面的距离.
点评:本题考查利用向量法求空间角、空间距离问题.利用向量求直线与平面所成的角及点到平面的距离关键是求得平面的法向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案