【题目】已知集合,,,令表示集合所含元素的个数.
(1)写出的值;
(2)当时,写出的表达式,并用数学归纳法证明.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是(φ为参数)和(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.
(Ⅰ)若两个球颜色不同,求不同取法的种数;
(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量、之间的线性回归方程为,且变量、之间的一-组相关数据如下表所示,则下列说法错误的是( )
A.可以预测,当时,B.
C.变量之间呈负相关关系D.该回归直线必过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:),经统计,树苗的高度均在区间内,将其按,,,,,分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于的为优质树苗.
(1)求图中的值;
(2)已知所抽取的这120株树苗来自于,两个试验区,部分数据如下列联表:
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与,两个试验区有关系,并说明理由;
(3)通过用分层抽样方法从试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.
附:参考公式与参考数据:
其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量毫克时为优质品.
(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一排组成.
| 明文字符 | A | B | C | D |
密码字符 | 11 | 12 | 13 | 14 | |
| 明文字符 | E | F | G | H |
密码字符 | 21 | 22 | 23 | 24 | |
| 明文字符 | M | N | P | Q |
密码字符 | 1 | 2 | 3 | 4 |
设随机变量表示密码中不同数字的个数.
(Ⅰ)求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和C2的极坐标方程;
(2)若点A在曲线C1上,点B在曲线C2上,且∠AOB,求|OA||OB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列{an},若从第二项起的每一项均大于该项之前的所有项的和,则称{an}为P数列.
(1)若{an}的前n项和Sn=3n+2,试判断{an}是否是P数列,并说明理由;
(2)设数列a1,a2,a3,…,a10是首项为﹣1、公差为d的等差数列,若该数列是P数列,求d的取值范围;
(3)设无穷数列{an}是首项为a、公比为q的等比数列,有穷数列{bn},{cn}是从{an}中取出部分项按原来的顺序所组成的不同数列,其所有项和分别为T1,T2,求{an}是P数列时a与q所满足的条件,并证明命题“若a>0且T1=T2,则{an}不是P数列”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com