精英家教网 > 高中数学 > 题目详情

【题目】已知曲线上的任意一点到两定点距离之和为,直线交曲线两点,为坐标原点.

1)求曲线的方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

【答案】12)证明见解析;(3

【解析】

1)利用椭圆的定义可知曲线为的椭圆,直接写出椭圆的方程.

2)设直线,设,联立直线方程与椭圆方程,通过韦达定理求解KOM,然后推出直线OM的斜率与的斜率的乘积为定值.

3)设直线方程是与椭圆方程联立,根据面积公式,代入根与系数的关系,利用换元和基本不等式求最值.

1)由题意知曲线是以原点为中心,长轴在轴上的椭圆,

设其标准方程为,则有

所以 .

2)证明:设直线的方程为

则由 可得,即

直线的斜率与 的斜率的乘积=为定值

3)点

可得

,解得

时,取得最大值.

此时,即

所以直线方程是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且 ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2

(1)证明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移 个单位从长度后,所得图象与原函数的图象重合,则ω的最小值为(
A.
B.3
C.6
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:x2=2py(p>0),点A(p, )到抛物线C1的准线的距离为2.
(1)求抛物线C1的方程;
(2)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数gx)的图象,则下列说法不正确的是()

A.函数gx)的图象关于点对称

B.函数gx)的周期是

C.函数gx)在上单调递增

D.函数gx)在上最大值是1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明,则当时,等式左边应在的基础上加上( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.

(1)求甲射击4次,至少1次未击中目标的概率;

(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,2a9a12+13a37,其前n项和为Sn

1)求数列{an}的通项公式;

2)求数列{}的前n项和Tn,并证明Tn

查看答案和解析>>

同步练习册答案