精英家教网 > 高中数学 > 题目详情
5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可归纳出:若函数f(x)是定义在R上的偶函数,则f′(x)(  )
A.为偶函数B.为奇函数
C.既为奇函数又为偶函数D.为非奇非偶函数

分析 由已知中(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,…分析其规律,我们可以归纳推断出,偶函数的导函数为奇函数.

解答 解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数;
(x4)'=4x3中,原函数为偶函数,导函数为奇函数;
(cosx)'=-sinx中,原函数为偶函数,导函数为奇函数;

我们可以推断,偶函数的导函数为奇函数.
故选:B.

点评 本题考查的知识点是归纳推理,及函数奇偶性的性质,其中根据已知中原函数与导函数奇偶性的关系,得到结论是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex
(Ⅰ)求函数g(x)=sinx•f(x)在(0,π)上的单调区间;
(Ⅱ)求证:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某零售店近五个月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x/千万35679
利润额y/百万元23345
(1)求利润额y关于销售额x的线性回归方程.
(2)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).
(附:在线性回归方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知下列三个等式:
①cos(-420°)=-$\frac{1}{2}$;
②sin3(-α)cos(2π+α)tan(-α-π)=sin4α;
③$\frac{cos(α-\frac{π}{2})}{sin(\frac{5π}{2}+α)}$=$\frac{1}{tanα}$.
其中正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.分别抛掷两枚质地均匀的硬币,设“第1枚为正面”为事件A,“第2枚为正面”为事件B,“2枚结果相同”为事件C,则A,B,C中相互独立的有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前项和为Sn.若a1=1,an=3Sn-1+4(n≥2).
(1)求数列{an}的通项公式;
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{{b}_{n}}{{2}^{n+1}}$,其中n∈N+,记数列{cn}的前项和为Tn.求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在锐角△ABC中,a、b分别是角A、B的对边,若2bsinA=a,则角B等于(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若等比数列{an}的各项均为正数,且a8a13+a9a12=26,则log2a1+log2a2+…+log2a20=(  )
A.120B.100C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某同学在一次研究性学习中发现,以下三个式子的值都等于同一个常数.
①sin210°+cos220°-sin10°cos20°;
②sin215°+cos215°-sin15°cos15°;
③sin216°+cos214°-sin16°cos14°;
请将该同学的发现推广为一般规律的等式为${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.

查看答案和解析>>

同步练习册答案