精英家教网 > 高中数学 > 题目详情
8.行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$(a、b、c、d∈{-1,1,2})所有可能的值中,最小值为-6.

分析 利用二阶行列式展开式法则求解.

解答 解:∵行列式$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc,
a、b、c、d∈{-1,1,2},
∴所有可能的值中,当a,d分别取-1,2,b和c取2时,
行列式最小值为:$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc=-2-4=-6.
故答案为:-6.

点评 本题考查二阶行列式的最小值的求法,是基础题,解题时要注意二阶行列式展开法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+1(x≤0)\\{e^{ax}}(x>0)\end{array}\right.$在[-2,3]上的最大值为2,则实数a的取值范围是(  )
A.$[\frac{1}{3}ln2,+∞)$B.$[0,\frac{1}{3}ln2]$C.(-∞,0]D.$(-∞,\frac{1}{3}ln2]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设等差数列{an}的前n项和为Sn,其公差为-1,若S1,S2,S4成等比数列,则a1=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知{an}为等差数列,a1+a3=2,则a2等于(  )
A.-1B.1C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线C:y2=2x,过抛物线C上一点P(1,$\sqrt{2}$)作倾斜角互补的两条直线PA、PB,分别交抛物线C于A、B两点,则直线AB的斜率为$-2-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC中,tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,又$\sqrt{3}$tanA+$\sqrt{3}$tanB+1=tanBtanA,则角B的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是公差d≠0的等差数列,a2,a6,a22成等比数列,a4+a6=26;数列{bn}是公比q为正数的等比数列,且b3=a2,b5=a6
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在长方体ABCD-A1B1C1D1中,AA1=2AB,AB=BC,则下列结论中正确的是(  ) 
A.BD1∥B1CB.A1D1∥平面AB1CC.BD1⊥ACD.BD1⊥平面AB1C

查看答案和解析>>

同步练习册答案