精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=asinxcosx﹣ acos2x+ a+b(a>0)
(1)写出函数的单调递减区间;
(2)设x∈[0, ],f(x)的最小值是﹣2,最大值是 ,求实数a,b的值.

【答案】
(1)解:f(x)=asinxcosx﹣ a = +

= +b=asin(2x﹣ )+b.

由 2kπ+ ≤2x﹣ ≤2kπ+ ,k∈z,解得 kπ+ ≤x≤kπ+ ,k∈z,

故函数的单调递减区间为[kπ+ ,kπ+ ],k∈z


(2)解:∵x∈[0, ],∴﹣ ≤2x﹣ ,∴﹣ ≤sin(2x﹣ )≤1.

∴f(x)min = =﹣2,f(x)max =a+b=

解得 a=2,b=﹣2+


【解析】(1)利用三角函数的恒等变换化简f(x)的解析式等于asin(2x﹣ )+b,由 2kπ+ ≤2x﹣ ≤2kπ+ ,k∈z,求得x的范围即得函数的单调递减区间.(2)根据 x∈[0, ],可得 2x﹣ 的范围,sin(2x﹣ )的范围,根据f(x)的最小值是﹣2,最大值是 ,求得实数a,b的值.
【考点精析】认真审题,首先需要了解正弦函数的单调性(正弦函数的单调性:在上是增函数;在上是减函数),还要掌握三角函数的最值(函数,当时,取得最小值为;当时,取得最大值为,则)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2+x+m)ex(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次考试中,五位学生的数学,物理成绩如下表所示:

(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;

(2)根据上表数据,画出散点图并用散点图说明物理成绩与数学成绩之间线性相关关系的强弱,如果具有较强的线性相关关系,求的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.

参考公式:

回归直线的方程是其中

是与对应的回归估计值,

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长为2的线段A B两端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C. (Ⅰ)求曲线C的方程;
(Ⅱ)点P(x,y)是曲线C上的动点,求3x﹣4y的取值范围;
(Ⅲ)已知定点Q(0, ),探究是否存在定点T(0,t)(t )和常数λ满足:对曲线C上任意一点S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a2+c2=b2+ ac. (Ⅰ)求∠B的大小;
(Ⅱ)求 cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{ an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(1)求数列{ an}的通项公式;
(2)若数列{bn}满足 +…+ =an (n∈N* 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(
A.(
B.[ ]
C.(
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(﹣2,3)的直线l被C所截得的线段的长为8,求直线l的方程.

查看答案和解析>>

同步练习册答案