精英家教网 > 高中数学 > 题目详情
6.如图为函数y=f(x)的图象,则不等式(x2-2x-8)f(x)>0的解集为{x|x<-2或0<x<4}.

分析 由题意,不等式(x2-2x-8)f(x)>0等价于$\left\{\begin{array}{l}{x<0}\\{{x}^{2}-2x-8>0}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-2x-8<0}\end{array}\right.$,求出x的范围,即可得出结论.

解答 解:由题意,不等式(x2-2x-8)f(x)>0等价于$\left\{\begin{array}{l}{x<0}\\{{x}^{2}-2x-8>0}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-2x-8<0}\end{array}\right.$,
∴x<-2或0<x<4,
∴不等式(x2-2x-8)f(x)>0的解集为{x|x<-2或0<x<4},
故答案为{x|x<-2或0<x<4}.

点评 本题考查函数的图象,考查不等式的解法,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax(a∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)g(x)=f(x)-lnx+2ex,当g(x)在[$\frac{1}{2}$,2]上存在零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线6x+8y=b与圆x2+y2-2x-2y+1=0相切,则b的值是(  )
A.4或24B.4或-24C.-4或24D.-4或-24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位长度,则平移后图象的函数解析式为yy=sin(2x-$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a=({2\sqrt{2},2})$,$\overrightarrow b=({0,2})$,$\overrightarrow c=({m,\sqrt{2}})$,且$({\overrightarrow a+2\overrightarrow b})⊥\overrightarrow c$,则实数m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.
利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你写出第二个被检测的种子的编号567.(下面摘取了随机数表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a是集合{1,2,3,4,5,6,7}中任意选取的一个元素,则圆C:x2+(y-2)2=1与圆O:x2+y2=a2内含的概率为$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数 f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)求函数f(x)的单调区间;
(2)设函数g(x)=-$\frac{a}{x}$.若至少存在一个x0∈[1,4],使得 f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在函数y=2sin(ωx+φ)(ω>0)的一个周期上,当x=$\frac{π}{6}$时,有最大值2,当x=$\frac{2π}{3}$时,有最小值-2,则ω=2.

查看答案和解析>>

同步练习册答案