精英家教网 > 高中数学 > 题目详情

【题目】对于函数,记集合;

(1)设,,求.

(2)设,,若,求实数a的取值范围.

(3)设.如果求实数b的取值范围.

【答案】1 2 3.

【解析】

1)由题意,得到不等式,即可求解;

2)由,得出不等式上恒成立,利用二次函数的性质,分类讨论,即可求解;

③由,求得,又由,可得,分类讨论,使得,即可求解.

1)由题意,函数,

,即,解得

所以.

2)由题意,函数,

又由,即不等式的解集为,

上恒成立,

①当时,即时,不等式为上恒成立;

②当时,则满足,解得

综上所述,实数的取值范围是.

③由题意,函数

,可得,解得

又由,可得

①当时,不等式的解集为,要使得

则满足,即,所以此时

②当时,不等式的解集为,要使得

则满足,即,所以此时

③当时,不等式的解集为,要使得

则满足恒成立,所以此时

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100.设该款手机每部使用年共需维修费用元,总费用.(总费用购买费用网络费和电话费维修费用)

1)求函数的表达式:

2)这款手机每部使用多少年时,它的年平均费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,且对任意, 恒成立,求实数的取值范围;

3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;

(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为PQ,高分别为21,底面半径为1A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:

①三棱锥体积的最大值为

直线PB与平面PAQ所成角的最大值为

当直线BQAP所成角最小时,其正弦值为

④直线BQAP所成角的最大值为

其中正确的结论有___________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本(x1 , x2…,xn)的平均数为x,样本(y1 , y2 , …,ym)的平均数为 ).若样本(x1 , x2…,xn , y1 , y2 , …,ym)的平均数 +(1﹣α) ,其中0<α< ,则n,m的大小关系为( )
A.n<m
B.n>m
C.n=m
D.不能确定

查看答案和解析>>

同步练习册答案