精英家教网 > 高中数学 > 题目详情
15.2015年春节放假安排,农历除夕至正月初六放假,共7天,某单位安排7位员工值班,每人值班1天,每天安排1人,若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有(  )
A.1440种B.1360种C.1282种D.1128种

分析 对甲分类讨论,即可得出结论.

解答 解:分类讨论,甲在初一值班,丙有2种方法,其余全排,共有C21A55=240种;
甲在初二值班,丙在初一值班,其余全排,共有A55=120种;丙在初三值班,乙有4种方法,其余全排,共有4A44=96种;
甲在初三值班,丙有2种方法,乙有4种方法,其余全排,共有8A44=192种;
甲在初四值班,丙有2种方法,乙有4种方法,其余全排,共有8A44=192种;
甲在初五值班,丙有2种方法,乙有4种方法,其余全排,共有8A44=192种;
甲在初六值班,丙有1种方法,乙有4种方法,其余全排,共有4A44=96种;
故共有1128种方法,
故选:D.

点评 本题主要考查分类计数原理,分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.本题限制条件比较多,容易出错,解题时要注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>f′(x),则不等式ex+2•f(x2-x)>e${\;}^{{x}^{2}}$•f(2)的解集是(  )
A.(-1,2)B.(-1,0)∪(1,2)C.(-∞,-1)∪(2,+∞)D.(-2,-1)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解方程:ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{4{x}^{2}+1}$+2x)+3x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x∈R.若[x]表示不超过x的最大整数,则f(x)=[x]
(1)求[3.5]+[4.2]
(2)试写出x∈[-2,2]时,f(x)的解析式;
(3)画出[-2,2]上函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{3x-2}{2x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≥1}\\{-{x}^{2}+2,x<1}\end{array}\right.$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X服从正态分布N(3,σ2),若P(1<X<5)=3P(X≥5),则P(X≤1)等于(  )
A.0.2B.0.25C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-1,3),则$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.(-1,2)B.(0,1)C.(-1,2)D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足2an+1+an=0,a1=$\frac{3}{2}$,则{an}的前10项和等于$\frac{1023}{1024}$.

查看答案和解析>>

同步练习册答案