精英家教网 > 高中数学 > 题目详情

【题目】已知函数是函数的图象与轴的个相邻交点的横坐标,且当时,取得最大值.

(1)求数的表达式;

(2)将函数的图象上的每一点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,再将函数的图象向右平移个单位,得到函数的图象.

①求函数的解析式;

②求函数在区间上的最大值和最小值.

【答案】(1);(2)①;②时,取得最小值时,取得最大值

【解析】分析:(1)根据函数的最大值得出的值,根据函数的图象与轴的相邻交点的横坐标的距离求出周期的值,再求出的值,即得的解析式与单调增区间;

由(1)知,.

(2)①依题意,.则.

②由题,所以,由此可求函数在区间上的最大值和最小值.

详解:

(1)因为取得最大值,所以.

因为是函数的图象与轴的个相邻交点的横坐标,

所以的最小正周期.

,所以.

,所以

因为,所以.从而,即.

所以.

(2)由(1)知,.

依题意,.

.

因为,所以

,即时,取得最小值

,即时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

5

9

11

9

7

9

满意人数

4

7

8

5

6

6


(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值为1.
(1)求a+b的值;
(2)若 恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区内有两条互相垂直的道路,分别以所在直线为轴、轴建立如图所示的平面直角坐标系,其第一象限有一块空地,其边界是函数的图象,前一段曲线是函数图象的一部分,后一段是一条线段.测得的距离为米,到的距离为米,长为米.现要在此地建一个社区活动中心,平面图为梯形(其中点在曲线上,点在线段上,且为两底边).

(1)求函数的解析式;

(2)当梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)判断曲线在点处的切线与曲线的公共点个数;

(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[0,+∞)上的函数f(x)满足:①当x∈[1,2)时, ;②x∈[0,+∞)都有f(2x)=2f(x).设关于x的函数F(x)=f(x)﹣a的零点从小到大依次为x1 , x2 , x3 , …xn , …,若 ,则x1+x2+…+x2n=

查看答案和解析>>

同步练习册答案