精英家教网 > 高中数学 > 题目详情
13.设等比数列{an}前n项和为Sn,若S3+S6=2S9,证明a2,a8,a5成等差数列.

分析 由S3+S6=2S9,利用等比数列的前n项和公式得到q3=-$\frac{1}{2}$,由此能证明a2,a8,a5成等差数列.

解答 证明:若等比数列{an}公比q=1,则S3+S6=9a1
而2S9=18a1,与S3+S6=2S9矛盾,
∴q≠1,
∵S3+S6=2S9
∴$\frac{{a}_{1}(1-{q}^{3})}{1-q}+\frac{{a}_{1}(1-{q}^{6})}{1-q}=\frac{2{a}_{1}(1-{q}^{9})}{1-q}$,
整理,得2q9-q6-q3=0,
解得${q}^{3}=-\frac{1}{2}$或q3=1,
∵q≠1,∴q3=-$\frac{1}{2}$,
∴a2+a5=a2+a2q3=a2-$\frac{1}{2}$a2=$\frac{1}{2}$a2 a8=a2q6=a2(-$\frac{1}{2}$)2=$\frac{1}{4}$a2
∴a2+a5=2a8,∴a2,a8,a5成等差数列.

点评 本题考查等差数列的证明,是中档题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知sin(π-θ)cosθ<0,且|cosθ|=cosθ,则角θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设n=${∫}_{0}^{\frac{π}{2}}$4sinxdx,则二项式(x-$\frac{1}{x}$)n的展开式的常数项是(  )
A.12B.6C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不等式$\frac{1-sinx}{2+sinx}$-m≥0对一切实数x成立,则实数m的取值范围是m≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.任取x1,x2∈[a,b],且x1≠x2,若f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)],称f(x)是[a,b]上的严格下凸函数,则下列函数中是严格下凸函数的有(  )
①f(x)=3x+1 ②f(x)=$\frac{1}{x}$,x∈(0,+∞) ③f(x)=-x2+3x+2
④f(x)=lgx ⑤f(x)=2x
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.
(1)当a=1时,求集合M,N;
(2)若M∪N=N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两个非零向量$\overrightarrow a$与$\overrightarrow b$不共线,
(1)若$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{BC}=2\overrightarrow a+8\overrightarrow b$,$\overrightarrow{CD}=3(\overrightarrow a-\overrightarrow b)$,求证:A、B、D三点共线;
(2)试确定实数k,使得$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a+k\overrightarrow b$共线;
(3)若$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),$\overrightarrow c=\overrightarrow a+λ\overrightarrow b$,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某超市要将甲、乙两种大小不同的袋装大米分装成A,B两种规格的小袋,每袋大米可同时分得A,B两种规格的小袋大米的袋数如下表所示:
规格类型
袋装大米类型
AB
21
13
已知库房中现有甲、乙两种袋装大米的数量分别为5袋和10袋,市场急需A,B两种规格的成品数分别为15袋和27袋.
(Ⅰ)问分甲、乙两种袋装大米各多少袋可得到所需A,B两种规格的成品数,且使所用的甲、乙两种袋装大米的袋数最少?(要求画出可行域)
(Ⅱ)若在可行域的整点中任意取出一解,求其恰好为最优解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列有关函数性质的说法,不正确的是(  )
A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数
B.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数
C.若f(x)为奇函数,g(x)为偶函数,则f(x)-g(x)为奇函数
D.若f(x)为奇函数,g(x)为偶函数,则|f(x)|-g(x)为偶函数

查看答案和解析>>

同步练习册答案