精英家教网 > 高中数学 > 题目详情

【题目】下列命题(1条斜线段长相等,则他们在平面内的射影长也相等;(2)直线不在平面内,他们在平面内的射影是两条平行直线,则;(3)与同一平面所成的角相等的两条直线平行;(4)一条直线与一个平面所成的角是,那么它与平面内任何其他直线所成的角都不小于;其中正确的命题序号是____________

【答案】4

【解析】

1)(2)(3)根据数形结合,直观想象判断;(4)通过图象,构造线面角和线与其他线所成的角,通过这两个角的余弦值的大小判断角的关系.

1条斜线长相等,但与平面所成角不相等时,那么他们在平面内的射影长也不相等,故(1)错误;

2)如图,直线在平面内的两条射影平行,但不一定平行,故(2)错误;

3)与同一平面所成角相等的两条直线平行或相交,故(3)错误;

如图:直线与平面所成角相等,相交

4)如图,平面是平面的斜线,是平面内以外的任一条直线,,连接

平面

中,

都在区间

当直线重合时,

当直线时,直线与平面内的任意条直线所成的角都是

当线在平面内或与平面平行时,线与平面所成的角是

综上:,故(4)正确.

故答案为:(4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABDA1B1C1D1中四边形A1B1C1D1ADD1A1ABB1A1均为正方形.点MBD的中点.点H在线段C1M上,且A1H与平面ABD所成角的正弦值为

(Ⅰ)证明:B1D1∥平面BC1D

(Ⅱ)求二面角AA1HB的的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.数列满足.

1)若,且,求正整数的值;

2)若数列均是等差数列,求的取值范围;

3)若数列是等比数列,公比为,且,是否存在正整数,使成等差数列,若存在,求出一个的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.

2)线性回归直线必过点

3)对于分类变量AB的随机变量越大说明AB有关系的可信度越大.

4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.

5)根据最小二乘法由一组样本点,求得的回归方程是,对所有的解释变量,的值一定与有误差.

以上命题正确的序号为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作圆的两条切线,切点分别为,直线恰好经过椭圆C的右顶点和上顶点.

1)求椭圆C方程;

2)过椭圆C左焦点F的直线l交椭圆C两点,椭圆上存在一点P,使得四边形为平行四边形,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中,,点上,且

1)证明:

2)在棱上是否存在一点,使三棱锥是正三棱锥?证明你的结论.

3)求以为棱,为面的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,直线,直线与椭圆交于不同的两点,点和点关于轴对称,直线轴交于点

1)若点是椭圆的一个焦点,求该椭圆的长轴的长度;

2)若,且,求的值;

3)若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1kx-y+4=0与直线l2x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为(  )

A.2B.C.D.

查看答案和解析>>

同步练习册答案