精英家教网 > 高中数学 > 题目详情
已知函数
(1)若存在,使不等式成立,求实数的取值范围;
(2)设,证明:
 (1);(2)详见解析.

试题分析:(1)这是一个含参不等式恒成立,求参数取值范围的问题,通常方法是根据函数性质进行求解,或分离参数转化为求函数最值问题,若方便分离参数又较容易求分离后函数的最值,还是分离参数较好,这样可避免对参数的讨论;(2)这是一个以函数的凹凸那条性为背景的一个不等式的证明问题双变元问题,可以将其中一个看成主元,另一个看成参数,构造函数,通过求导判断函数的单调性和最值达到证明的目的.
试题解析:(1)(1)由变形为
,则
故当时,上单调递减;
时,上单调递增,
所以的最大值只能在处取得
,所以
所以,从而
(2)∵,∴
,则

时,上为减函数;
时,上为增函数.
从而当时,
因为,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知奇函数

(1)求实数的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间上单调递增,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的定义域为,并且满足,且,当时,
(1).求的值;(3分)
(2).判断函数的奇偶性;(3分)
(3).如果,求的取值范围.(6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用定义证明函数f(x)=x2+2x-1在(0,1]上是减函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数定义在R上的奇函数,当时,,给出下列命题:
①当时,           ②函数有2个零点
的解集为       ④,都有
其中正确的命题是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则a,b,c的大小关系是           (  )
A.a>c>bB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在上的增函数,函数的图象关于点对称. 若对任意的,不等式恒成立,则当时,的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,满足对任意,都有成立,则的取值范围是         .

查看答案和解析>>

同步练习册答案