精英家教网 > 高中数学 > 题目详情
已知数列{an}满足递推关系式an=2an-1+1,(n≥2)其中a4=15
(1)求a1,a2,a3
(2)求数列{an}的通项公式
(3)求数列{an}的前n项和S.
分析:(1)利用数列的递推关系式,通过n=4,求出a3,类似求出a1,a2
(2)通过递推关系式,推出数列{an+1}是以a1+1为首项,2为公比的等比数列,然后求数列{an}的通项公式.
(3)写出数列{an}的前n项和的表达式.利用拆项法,通过等比数列求和求解即可.
解答:解:(1)由an=2an-1+1,(n≥2)其中a4=15
,可知a4=2a3+1,解得a3=7,
同理可得,a2=3,a1=1.
(2)由an=2an-1+1,(n≥2)可知an+1=2an-1+2,(n≥2),
∴数列{an+1}是以a1+1为首项,2为公比的等比数列,
∴an+1=(a1+1)•2n-1=2n
所以an=2n-1.
(3)∵an=2n-1.
∴Sn=a1+a2+a3+…+an
=(21-1)+(22-1)+…+(2n-1)
=(21+22+…+2n)-n
=
2(1-2n)
1-2
-n

=2n+1-n-2.
点评:本题考查数列的递推关系式与数列通项公式,前n项和的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案