A. | $\frac{{\sqrt{39}}}{39}$ | B. | $\frac{{\sqrt{13}}}{13}$ | C. | $\frac{{\sqrt{13}}}{39}$ | D. | $\frac{{\sqrt{39}}}{13}$ |
分析 取A'C'的中点D,连接B'D,AD,由线面垂直的性质和判定定理,得到B'D⊥平面AC',则∠B'AD即为直线AB′与侧面AC′所成的角,再由解直角三角形的知识,即可得到所成的角.
解答 解:取A'C'的中点D,连接B'D,AD,
则由底面边长为a的正三角形,
得,B'D=$\frac{\sqrt{3}}{2}$a,B'D⊥A'C',
在直三棱柱中,AA'⊥底面A'B'C',
则AA'⊥B'D,即有B'D⊥平面AC',
则∠B'AD即为直线AB′与侧面AC′所成的角,
在直角三角形B'AD中,B'D=$\frac{\sqrt{3}}{2}$a,AD=$\sqrt{(\sqrt{3}a)^{2}+(\frac{a}{2})^{2}}$=$\frac{\sqrt{13}}{2}$a,
则tan∠B'AD=$\frac{B′D}{AD}$=$\frac{\frac{\sqrt{3}}{2}a}{\frac{\sqrt{13}}{2}a}$=$\frac{{\sqrt{39}}}{13}$,
故选:D
点评 本题考查空间直线与平面所成的角的求法,根据线面角的定义作出平面角是解决本题的关键.考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
A. | 6 | B. | -6 | C. | -6.5 | D. | 6.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -4 | B. | -$\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com