【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2–2x+2.
(1)求函数f(x)的解析式;
(2)当x∈[m,n]时,f(x)的取值范围为[2m,2n],试求实数m,n的值.
【答案】(1);(2),
【解析】
(1)根据偶函数性质求解x<0 时解析式,再根据分段函数形式得结果(2)先根据函数值域确定m取值范围,再根据对称轴与定义区间位置关系分类讨论最值取法,最后根据最值求m,n的值.
(1)当 x<0 时,–x>0,
由题意,f(–x)=(–x)2 +2x+2=x2 +2x+2,
因为 f(x)是偶函数,∴f(x)=f(–x)=x 2 +2x+2,
∴f(x)=
(2)∵函数 f(x)的值域为[1,+∞),显然有 2m≥1,即 m≥
①当时,f(x)单调递减,此时
∴m2 =n2 ,显然不成立,
②当时,f(x)在(m,1)上单调递减,在(1,n)上单调递增,
f(x)min =f(1)=1=2m,f(m)= f()=,f(n)=n2 –2n+2,
若f(x)max =f(), 即2n=,n= (舍)
若 f(x)max =f(n),即 2n=n2 –2n+2,n=2+ 或n=2 (舍)
∴m=, n=2+
③当 1<m<n 时,f(x)单调递增
此时 ∴ (舍)
综上,m=
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
②已知命题p:x∈R,x2+6x+11<0,则p:x∈R,x2+6x+11≥0;
③若命题“p”与命题“p或q”都是真命题,则命题q一定是真命题;
④命题“若0<a<1,则loga(a+1)<log
其中正确结论的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax(a>0且a≠1)的图象过点(4,2),
(1)求a的值.
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域.
(3)在(2)的条件下,求g(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,则下列结论正确的是( )
A.当时,函数在上有最小值;
B.当时,函数在上有最小值;
C.对任意的实数,函数的图象关于点对称;
D.方程可能有三个实数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F2、F1是双曲线 =1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinx+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则( )
A.g(x)是奇函数
B.g(x)关于直线x=﹣ 对称
C.g(x)在[ , ]上是增函数
D.当x∈[ , ]时,g(x)的值域是[2,1]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com