精英家教网 > 高中数学 > 题目详情

【题目】已知fx)是定义在R上的偶函数,当x≥0时,fx=x2–2x+2

1)求函数fx)的解析式;

2)当x[mn]时,fx)的取值范围为[2m2n],试求实数mn的值.

【答案】1;(2

【解析】

1)根据偶函数性质求解x<0 时解析式,再根据分段函数形式得结果(2)先根据函数值域确定m取值范围,再根据对称轴与定义区间位置关系分类讨论最值取法,最后根据最值求mn的值.

1)当 x<0 时,x>0

由题意,fx=x2 +2x+2=x2 +2x+2

因为 fx)是偶函数,∴fx=fx=x 2 +2x+2

fx=

2)∵函数 fx)的值域为[1+∞),显然有 2m≥1,即 m

①当时,fx)单调递减,此时

m2 =n2 ,显然不成立,

②当时,fx)在(m1)上单调递减,在(1n)上单调递增,

fxmin =f1=1=2mfm= f=fn=n2 –2n+2

fxmax =f, 2n=n= (舍)

fxmax =fn),即 2n=n2 –2n+2n=2+ n=2 (舍)

m=, n=2+

③当 1<m<n 时,fx)单调递增

此时 (舍)

综上,m=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①命题a=0,ab=0”的否命题是a=0,ab≠0”;

②已知命题p:xR,x2+6x+11<0,p:xR,x2+6x+110;

③若命题p与命题pq都是真命题,则命题q一定是真命题;

④命题0<a<1,loga(a+1)<log

其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0a≠1)的图象过点(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定义域.

(3)(2)的条件下,g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数
回归直线方程是: ,其中
参考数据:
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:

学生编号

1

2

3

4

5

6

7

8

数学分数x

60

65

70

75

80

85

90

95

物理分数y

72

77

80

84

88

90

93

95

化学分数z

67

72

76

80

84

87

90

92

①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论正确的是( )

A.时,函数上有最小值;

B.时,函数上有最小值;

C.对任意的实数,函数的图象关于点对称;

D.方程可能有三个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F2、F1是双曲线 =1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则(
A.g(x)是奇函数
B.g(x)关于直线x=﹣ 对称
C.g(x)在[ ]上是增函数
D.当x∈[ ]时,g(x)的值域是[2,1]

查看答案和解析>>

同步练习册答案