精英家教网 > 高中数学 > 题目详情
(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线г.
(Ⅰ)求曲线г的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线г包围的范围内?说明理由.
(说明:点在曲线г包围的范围内是指点在曲线г上或点在曲线г包围的封闭图形的内部.)
(Ⅲ)设Q是曲线г上的一点,过点Q的直线l 交 x 轴于点F(-1,0),交 y 轴于点M,若|
MQ
|=2|
QF
|
,求直线l 的斜率.
分析:(I)由题意利用椭圆的定义即可得出;
(II)解法一:利用轴对称(垂直平分)的知识可求出:原点O关于直线x+y-1=0的对称点为R(m,n),再判断
m2
4
+
n2
2
<1
是否成立即可.
解法二:同解法一求出点R(m,n),进而得到直线OR的方程,与椭圆方程联立即可得出交点G,H.判断点R是否在在线段GH上即可.
(III)由已知可得直线l的方程,可得点M的坐标,由Q,F,M三点共线,及|
MQ
|=2|
QF
|
,即可得出点Q的坐标,代入椭圆方程即可得到直线l的斜率.
解答:解:(Ⅰ)由题意可知,点P到两定点F1(-
2
,0),F2(
2
,0)
的距离之和为定值4,
所以点P的轨迹是以F1(-
2
,0),F2(
2
,0)
为焦点的椭圆.
a=2,c=
2
,所以b=
2

故所求方程为
x2
4
+
y2
2
=1

(Ⅱ)解法一:设原点O关于直线x+y-1=0的对称点为R(m,n),
由点关于直线的对称点的性质得:
n
m
=1
m
2
+
n
2
-1=0
,解得
m=1
n=1
即R(1,1).
此时
12
4
+
12
2
=
3
4
<1
,∴R在曲线г包围的范围内.
解法二:设原点O关于直线x+y-1=0的对称点为R(m,n),
由点关于直线的对称点的性质得:
n
m
=1
m
2
+
n
2
-1=0
,解得
m=1
n=1
即R(1,1),
∴直线OR的方程:y=x
设直线OR交椭圆
x2
4
+
y2
2
=1
于G和H,
y=x
x2
4
+
y2
2
=1
得:
x=
2
3
3
y=
2
3
3
x=-
2
3
3
y=-
2
3
3
G(
2
3
3
2
3
3
)
H(-
2
3
3
,-
2
3
3
)

显然点R在线段GH上.∴点R在曲线г包围的范围内.
(Ⅲ)由题意知直线l 的斜率存在,设直线l 的斜率为k,直线l 的方程为y=k(x+1).
则有M(0,k),设Q(x1,y1),由于Q,F,M三点共线,且|
MQ
|=2|
QF
|

根据题意,得(x1,y1-k)=±2(x1+1,y1),解得
x1=-2
y1=-k
x1=-
2
3
y1=
k
3

又点Q在椭圆上,所以
(-2)2
4
+
(-k)2
2
=1或
(-
2
3
)
2
4
+
(
k
3
)
2
2
=1

解得k=0,k=±4.
综上,直线l 的斜率为k=0,k=±4.
点评:本题综合考查了椭圆的标准方程及其性质、轴对称性质、点与椭圆的位置关系、向量关系等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕尾二模)cos150°的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)如图,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求证:DA⊥平面PAB;
(Ⅱ) 求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖
100
100
块.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=
7
7

②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕尾二模)已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是(  )

查看答案和解析>>

同步练习册答案