精英家教网 > 高中数学 > 题目详情
已知非零向量
a
b
满足|
a
|=
2
,且(
a
-
b
)•(
a
+
b
)=
1
2
.则|
b
|
=(  )
分析:利用向量的运算法则即可得出.
解答:解:∵(
a
-
b
)•(
a
+
b
)=
1
2
|
a
|=
2
,∴
a
2
-
b
2
=
1
2
,∴2-
b
2
=
1
2
,化为|
b
|2=
3
2

|
b
|=
6
2

故选A.
点评:熟练掌握向量的运算法则是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|
,求证:
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
+
b
|=|
b
|

①若
a
b
共线,则
a
=-2
b

②若
a
b
不共线,则以|
a
|、|
a
+2
b
|、2|
b
|
为边长的三角形为直角三角形;
2|
b
|>|
a
+2
b
|
; ④2|
b
|<|
a
+2
b
|

其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)已知非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|=
2
3
3
|
a
|,则
a
+
b
a
-
b
的夹角为
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)已知非零向量
a
b
满足|
a
|=1,|
a
-
b
|=
3
a
b
的夹角为120°,则|
b
|=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•珠海二模)已知非零向量
a
b
满足
a
b
,则函数f(x)=(
a
x+
b
)2(x∈R)
是(  )

查看答案和解析>>

同步练习册答案