精英家教网 > 高中数学 > 题目详情
19.已知m,n,s,t∈R+,m+n=2,$\frac{m}{s}$+$\frac{n}{t}$=9,其中m,n是常数,当s+t取最小值$\frac{4}{9}$时,m,n对应的点(m,n)是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的一条弦的中点,则此弦所在的直线方程为x+2y-3=0.

分析 :由题设知($\frac{m}{s}$+$\frac{n}{t}$)(s+t)=n+m+$\frac{mt}{s}$+$\frac{ns}{t}$≥m+n+2$\sqrt{\frac{mt}{s}•\frac{ns}{t}}$=m+n+2 $\sqrt{mn}$,满足 $\frac{mt}{s}$=$\frac{ns}{t}$时取最小值,由此得到m=n=1.设以(1,1)为中点的弦交椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得2(x1-x2)+4(y1-y2)=0,k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,由此能求出此弦所在的直线方程.

解答 解:∵sm、n、s、t为正数,m+n=2,$\frac{m}{s}$+$\frac{n}{t}$=9,
s+t最小值是$\frac{4}{9}$,
∴($\frac{m}{s}$+$\frac{n}{t}$)(s+t)的最小值为4.
∴($\frac{m}{s}$+$\frac{n}{t}$)(s+t)=n+m+$\frac{mt}{s}$+$\frac{ns}{t}$≥m+n+2$\sqrt{\frac{mt}{s}•\frac{ns}{t}}$=m+n+2 $\sqrt{mn}$,
满足$\frac{mt}{s}=\frac{ns}{t}$时取最小值,
此时最小值为m+n+2$\sqrt{mn}$=2+2$\sqrt{mn}$=4,
得:mn=1,又:m+n=2,所以,m=n=1.
设以(1,1)为中点的弦交椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1于A(x1,y1),B(x2,y2),
由中点从坐标公式知x1+x2=2,y1+y2=2,
把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得
$\left\{\begin{array}{l}{{{x}_{1}}^{2}+2{{y}_{1}}^{2}=4…①}\\{{{x}_{2}}^{2}+2{{y}_{2}}^{2}=4…②}\end{array}\right.$,
①-②,得2(x1-x2)+4(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$,
∴此弦所在的直线方程为y-1=-$\frac{1}{2}$(x-1),
即x+2y-3=0.
故答案为:x+2y-3=0.

点评 本题考查椭圆的性质和应用,解题时要认真审题,注意均值不等式和点差法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输入x=-1,n=5,则输出s=(  )
A.-2B.-3C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xoy中,A,B,C均为⊙O上的点,其中A($\frac{3}{5}$,$\frac{4}{5}$),C(1,0),点B在第二象限.
(1)设∠COA=θ,求tan2θ的值;
(2)若△AOB为等边三角形,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知样本数据a1,a2,a3,a4,a5的方差s2=$\frac{1}{5}$(a12+a22+a32+a42+a52-80),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为9或-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范围为(  )
A.[$\frac{2\sqrt{10}}{5}$,5]B.[$\sqrt{2}$,4]C.[$\sqrt{2}$,$\sqrt{5}$]D.[$\frac{2\sqrt{10}}{5}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-lnx,a∈R.
(1)当a=1时,求函数f(x)在点 (1,f(1))处的切线方程;
(2)是否存在实数a,使f(x)的最小值为$\frac{3}{2}$,若存在,求出a的值;若不存在,请说明理由;
(3)当x∈(0,+∞)时,求证:e2x3-2x>2(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.
(1)求x+y能被3整除的概率;
(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)(x∈R)满足f(-x)=8-f(4+x),函数g(x)=$\frac{4x+3}{x-2}$,若函数f(x)与g(x)的图象共有168个交点,记作Pi(xi,yi)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为(  )
A.2018B.2017C.2016D.1008

查看答案和解析>>

同步练习册答案