精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB= ,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求平面AMC与平面BMC所成二面角的大小.

【答案】
(1)证明:∵PA⊥面ABCD,CD⊥AD,

∴由三垂线定理得:CD⊥PD.

因而,CD与面PAD内两条相交直线AD,PD都垂直,

∴CD⊥面PAD.

又CD面PCD,∴面PAD⊥面PCD


(2)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.

连接AE,可知AC=CB=BE=AE=

又AB=2,所以四边形ACBE为正方形.

由PA⊥面ABCD,得∠PEB=90°

在Rt△PEB中,BE=a2=3b2,PB=

∴cos∠PBE= =

∴AC与PB所成的角为arccos


(3)证明:作AN⊥CM,垂足为N,连接BN.

在Rt△PAB中,AM=MB,又AC=CB,

∴△AMC≌△BMC,

∴BN⊥CM,故∠ANB为所求二面角的平面角

∵CB⊥AC,

由三垂线定理,得CB⊥PC,

在Rt△PCB中,CM=MB,所以CM=AM.

在等腰三角形AMC中,ANMC= AC,

∴AN= .∴AB=2,

∴cos∠ANB= =﹣

故平面AMC与平面BMC所成二面角的大小为arccos(﹣ ).


【解析】(1)由三垂线定理得CD⊥PD,从而CD⊥面PAD,再由CD面PCD,能证明面PAD⊥面PCD. (2)过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角. 连接AE,推导出四边形ACBE为正方形,由此能求出AC与PB所成的角.(3)作AN⊥CM,垂足为N,连接BN,则∠ANB为所求二面角的平面角,由此能求出平面AMC与平面BMC所成二面角的大小.
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系,以及对平面与平面垂直的判定的理解,了解一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】非空集合A中的元素个数用(A)表示,定义(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,则a的所有可能值为(
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若全集U=R,函数y= + 的定义域为A,函数y= 的值域为B.
(1)求集合A,B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中不表示同一函数的是(
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 在抛物线上,圆过原点且与的准线相切.

(Ⅰ) 求的方程;

(Ⅱ) 点,点(与不重合)在直线上运动,过点的两条切线,切点分别为, .求证: (其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的长轴是短轴的两倍,点P( )在椭圆上,不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2 , 且k1、k、k2恰好构成等比数列,记△AOB的面积为S.
(1)求椭圆C的方程;
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2+4x﹣2y+3=0,直线l过点P(﹣3,0),圆M的圆心坐标是;若直线l与圆M相切,则切线在y轴上的截距是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体的六条棱中,有五条棱长都等于a,则该四面体的体积的最大值为(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校届高三文(1)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在的学生数有人.

(1)求总人数和分数在的人数

(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

(3)现在从比分数在名学生(男女生比例为)中任选人,求其中至多含有名男生的概率.

查看答案和解析>>

同步练习册答案