精英家教网 > 高中数学 > 题目详情
已知随机变量ξ的分布列

η=2ξ-3,则η的期望为_______.
3
解:因为Eξ=0.1+0.4+1.2+0.8+0.5=3,Eη=2Eξ-3=3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数
0
1
2
3
人数
5
10
20
15
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:
(1)的概率的分布列及期望E;
(2 ) 停车时最多已通过3个路口的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、随机变量Y~,且,,则    
A. n="4" p=0.9B.n="9" p="0.4" C.n="18" p=0.2D.N="36" p=0.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某学校要对学生进行身体素质全面测试,对每位学生都要进行考核(即共项测试,随机选取项),若全部合格,则颁发合格证;若不合格,则重新参加下期的考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为,第二次参加考试合格的概率为,第三次参加考试合格的概率为,若第四次抽到可要求调换项目,其它选项小李均可一次性通过.
(1)求小李第一次考试即通过的概率
(2)求小李参加考核的次数分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有两个项目,投资项目万元,一年后获得的利润为随机变量(万元),根据市场分析,的分布列为:
X1
12
11.8
11.7
P



 
投资项目万元,一年后获得的利润(万元)与项目产品价格的调整(价格上调或下调)有关, 已知项目产品价格在一年内进行次独立的调整,且在每次调整中价格下调的概率都是.
经专家测算评估项目产品价格的下调与一年后获得相应利润的关系如下表:
项目产品价格一年内下调次数(次)



投资万元一年后获得的利润(万元)



 
(Ⅰ)求的方差
(Ⅱ)求的分布列;
(Ⅲ)若,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为元.
等级
一等品
二等品
三等品
次品
 
 
 

 
等级
一等品
二等品
三等品
次品
利润
 



 
表1                                     表2
(1) 求的值;
(2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

随机变量X的分布列如下表:

则X的数学期望是(  )
A.1.9B.1.8C.1.7D.随m的变化而变化

查看答案和解析>>

同步练习册答案