精英家教网 > 高中数学 > 题目详情
给出下列命题:①?x∈R,且x≠0,x+
1
x
≥2
;②?x∈R,x2+1≤2x;③若x>0,y>0,则
x2+y2
2
2xy
x+y
.其中所有真命题的序号是
②③
②③
分析:①令x=-1,可得x+
1
x
<0
,从而进行判断;
②?x∈R,x2+1≤2x,对其进行移项,配方,再进行判断;
③根据均值不等式:
a2+b2
2
a+b
2
ab
2
1
a
+
1
b
(a,b>0)进行判断;
解答:解:①令x=-1,可得x+
1
x
=-1-1=-2≤2,故①错误;
②?x∈R,x2+1≤2x,∴(x-1)2≤0,令x=1,可得0≤0,故②正确;
③∵x>0,y>0,由已知均值不等式:
a2+b2
2
a+b
2
ab
2
1
a
+
1
b
(a,b>0),
x2+y2
2
2xy
x+y
=
2
1
x
+
1
y
,故③正确
故答案为:②③;
点评:此题主要考查均值不等式的性质,注意x+
1
x
≥2
要求x,y>0,不能忘记条件,这是同学们容易出错的地方,此题是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:①“x>2”是“x≥2”的必要不充分条件;②“若x≠3,则x2-2x-3≠0”的逆否命题是假命题;③“9<k<15”是“方程
x2
15-k
+
y2
k-9
=1
表示椭圆”的充要条件.其中真命题的个数是
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①?x∈R,x3>x
②若“p∧q”是真命题,则“p∨q”也是真命题;
③命题“?x∈R,x3-2x2+1≤0”的否定是“?x∈R,x3-2x2+1>0”
④命题“若am2<bm2,则a<b”的逆命题是真命题.其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(
x
+
1
x
)6
的展开式中的常数项是20;
②函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S
=∫
π
sinxdx

③若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①“x=2”是“x2=4”的充分不必要条件;
②设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围为[3,+∞);
③若log2x+logx2≥2,则x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命题P:对任意的x∈R,函数y=cos(2x-
π
3
)
的递减区间为[kπ-
π
12
,kπ+
12
](k∈Z)
,命题q:存在x∈R,使tanx=1,则命题“p且q”是真命题.
其中真命题的序号为
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题
①存在x∈(0,
π
2
)
,使sinx+cosx=
1
3

②存在区间(a,b),使y=cosx为减函数而sinx<0;
③y=tanx在其定义域内为增函数;
y=cos2x+sin(
π
2
-x)
既有最大值和最小值,又是偶函数;
y=sin|2x+
π
6
|
的最小正周期为π.
其中错误的命题为
①②③⑤
①②③⑤
(把所有符合要求的命题序号都填上)

查看答案和解析>>

同步练习册答案