科目:高中数学 来源: 题型:
(14分)已知椭圆C:=1()的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、两点,坐标原点到直线的距离为,
求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:=1()的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、两点,坐标原点到直线的距离为,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考文数学试卷(解析版) 题型:解答题
已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三12月月考理科数学 题型:解答题
(本小题满分12分)
已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2010-2011年吉林一中高二下学期第一次月考数学文卷 题型:解答题
.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线:与椭圆C交于,两点,点,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com