精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线C1:ρsin2θ=4cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C2的参数方程为: ,(θ∈[﹣ ]),曲线C: (t为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)C与C1相交于A,B,与C2相切于点Q,求|AQ|﹣|BQ|的值.

【答案】解:(Ⅰ)∵x=ρcosθ,y=ρsinθ, 由ρsin2θ=4cosθ,得ρ2sin2θ=4ρcosθ,
∴曲线C1的直角坐标方程为:y2=4x.
(Ⅱ)设Q(cosθ,sinθ),(θ∈[﹣ ]),由题意知直线C的斜率k=
所以 ,即 =tanθ=﹣
所以 ,故Q( ,﹣ ).
,不妨设A,B对应的参数分别为t1 , t2
,代入y2=4x,
化简得 ,即3t2﹣(8+2 )t﹣8 =0,
∵C与C1相交于A,B,∴△>0,t1+t2=
∴|AQ|﹣|BQ|=|t1+t2|=
【解析】(Ⅰ)由x=ρcosθ,y=ρsinθ,能求出曲线C1的直角坐标方程.(Ⅱ)设Q(cosθ,sinθ),(θ∈[﹣ ]),由题意知直线C的斜率k= ,从而 =tanθ=﹣ ,进而Q( ,﹣ ).设A,B对应的参数分别为t1 , t2 . 把 ,代入y2=4x,得3t2﹣(8+2 )t﹣8 =0,由此利用韦达定理能求出|AQ|﹣|BQ|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,的中点.

求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面ABCD是平行四边形,△PAB与△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2 ,AC⊥BA,点E是线段AB上靠近点B的一个三等分点,点F、G分别在线段PD,PC上.
(Ⅰ)证明:CD⊥AG;
(Ⅱ)若三棱锥E﹣BCF的体积为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数yf(x)的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f(x)>f(-x)+x的解集为(  )

A. (0,1]

B. [-1,0)

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C1yx2(p>0)的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.C1在点M处的切线平行于C2的一条渐近线,则p( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+x,x∈R,当 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是(
A.(0,1)
B.(﹣∞,0)
C.
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,椭圆C1 + =1(a>b>0)的离心率为 ,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.
(1)求椭圆的方程;
(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,对任意的,均有.时,,则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案