精英家教网 > 高中数学 > 题目详情
α∈(0,
π
2
)
,函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,有f(
x+y
2
)
=f(x)sinα+(1-sinα)f(y),则α=
 
f(
1
2
)
=
 
分析:(1)分别给x,y赋值0,1得到一个f(
1
2
)表达式;在给x,y分别赋值1,0得到f(
1
2
)的另一个表达式,列出方程求出f(
1
2
).
(2)由(1)中得到的sinα=
1
2
求出角α.
解答:解:(1)f(
1
2
)=f(
0+1
2

=f(0)sinα+(1-sinα)f(1)
=1-sinα
又f(
1
2
)=f(
1+0
2

=f(1)sinα+(1-sinα)f(0)
=sinα
所以1-sinα=sinα   解得  sinα=
1
2

故f(
1
2
)=sinα=
1
2

(2)由(1)知sinα=
1
2

又a∈(0,
π
2

所以a=
π
6

故答案为:
π
6
1
2
点评:本题考查通过赋值的方法解决抽象函数的函数值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•杭州一模)设α∈(0 
π
2
)
.若tanα=
1
3
,则cosα=
3
10
10
3
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2,求当x为何值时,函数y=4x-
12
-2x+1+5
取最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤2π,且|cosx-sinx|=sinx-cosx,则x的取值范围为
[
π
4
4
]
[
π
4
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)设α∈(0,
π
2
),则
3+2sinαcosα
sinα+cosα
的最小值是
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设α∈(0,
π
2
)
,f(
α
2
)=
11
5
,求cosα的值.

查看答案和解析>>

同步练习册答案