精英家教网 > 高中数学 > 题目详情
7.(1)把圆锥曲线C的参数方程:$\left\{\begin{array}{l}x={t^2}+\frac{1}{t^2}-2\\ y=t-\frac{1}{t}\end{array}\right.(t$为参数)化为直角坐标方程;
(2)若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+$\frac{π}{3}$),它们相交于A、B两点,求线段AB的长.

分析 (1)消去参数,可得直角坐标方程;
(2)先将原极坐标方程化成直角坐标方程,再利用直角坐标方程进行判断.

解答 解:(1)圆锥曲线C的参数方程:$\left\{\begin{array}{l}x={t^2}+\frac{1}{t^2}-2\\ y=t-\frac{1}{t}\end{array}\right.(t$为参数),可得y2=t2+$\frac{1}{{t}^{2}}$-2=x;
(2)由ρ=1得x2+y2=1,
又∵ρ=2cos(θ+$\frac{π}{3}$)=cosθ-$\sqrt{3}$sinθ,
∴ρ2=ρcosθ-$\sqrt{3}ρ$sinθ,
∴x2+y2-x+$\sqrt{3}$y=0,
联立两方程,解得A(1,0),B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
∴|AB|=$\sqrt{(1+\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{3}$.

点评 本题考查参数方程与普通方程的互化,考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知直线l过点(3,2),且与两条坐标轴围成一个等腰直角三角形,则直线l的方程为x-y-1=0或x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为二次函数,-1和3是函数y=f(x)-x-4的两个零点,且f(0)=1
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ) 设g(x)=f(x)-3x-6,求y=g(log3x)在区间$[\frac{1}{9},27]$上的最值,并求相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|(x+1)(x-2)<0},非空集合B={x|2a<x<6},则“A∩B=∅”的充分不必要条件可以是(  )
A.-1<a<2B.1≤a<3C.a>0D.1<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知随机变量ε的分布列如下表:
ε01234
p0.20.40.30.080.02
求其数学期望、方差和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)上任一点(x0,f(x0))处的切线斜率$k=({{x_0}-2}){({{x_0}+1})^2}$,则该函数的单调递减区间为(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1),(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)若AF=BE,求二面角的E-OC-F的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.集合A={-1,1},B={x|mx=1},A∪B=A,则实数m组成的集合(  )
A.{-1}B.{1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosθ\\ y=-3+2sinθ\end{array}\right.$(θ为参数).
(Ⅰ)以原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知A(3,0),B(0,-3),在圆C上任意取一点M(x,y),求|MA|2+|MB|2的最大值.

查看答案和解析>>

同步练习册答案