分析 (1)消去参数,可得直角坐标方程;
(2)先将原极坐标方程化成直角坐标方程,再利用直角坐标方程进行判断.
解答 解:(1)圆锥曲线C的参数方程:$\left\{\begin{array}{l}x={t^2}+\frac{1}{t^2}-2\\ y=t-\frac{1}{t}\end{array}\right.(t$为参数),可得y2=t2+$\frac{1}{{t}^{2}}$-2=x;
(2)由ρ=1得x2+y2=1,
又∵ρ=2cos(θ+$\frac{π}{3}$)=cosθ-$\sqrt{3}$sinθ,
∴ρ2=ρcosθ-$\sqrt{3}ρ$sinθ,
∴x2+y2-x+$\sqrt{3}$y=0,
联立两方程,解得A(1,0),B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
∴|AB|=$\sqrt{(1+\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{3}$.
点评 本题考查参数方程与普通方程的互化,考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1<a<2 | B. | 1≤a<3 | C. | a>0 | D. | 1<a<3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1),(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-1} | B. | {1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com