精英家教网 > 高中数学 > 题目详情
对于任意实数x,符号[x]表示不超过x的最大整数,例如[-1.5]=-2,[2.5]=2,定义函数{x}=x-[x],则给出下列四个命题:①函数{x}的定义域是R,值域为[0,1];②方程{x}=
1
2
有无数个解;③函数{x}是周期函数;④函数{x}是增函数.其中正确的序号是(  )
A、①③B、②④C、①④D、②③
分析:要使解析式有意义,得出函数{x}的定义域为R,由周期函数的定义证明此函数为周期函数,使求出一个周期的上的值域,即为整个函数的值域,周期函数不是单调函数.
解答:解:∵函数{x}的定义域为R,又∵{x+1}=(x+1)-[x+1]=x-[x]={x},
∴函数{x}=x-[x]是周期为1的函数,∴③是正确的,
当0≤x<1时,{x}=x-[x]=x-0=x,∴函数{x}的值域为[0,1),∴①错误,
当x=
1
2
时,{x}=
1
2
,又∵函数{x}=x-[x]是周期为1的函数,∴x=
1
2
+k时(k∈Z),{x}=
1
2
,∴②是正确的,
∵函数{x}是周期为1的函数,∴函数{x}不是单调函数,∴④错误
故选D.
点评:此题是自定义一个函数,求函数的性质,一般研究函数从图象入手,要找出准确的切入点,x∈R时,[x]∈Z,x-[x]∈[0,1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示x的整数部分,即[x]是“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数,如[-2]=-2,[-1.5]=-2,[2.5]=2,则[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值为(  )
A、28B、32C、33D、34

查看答案和解析>>

科目:高中数学 来源: 题型:

8、对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么[log31]+[log32]+[log33]+…+[log3243]的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,这个函数[x]叫做“取整函数”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数;如[-2]=-2,[-1.5]=-2,[2.5]=2;则[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,则[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步练习册答案