精英家教网 > 高中数学 > 题目详情
19.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),P是椭圆上非x轴上的一点,△PF1F2中,若F2(右焦点)关于∠F1PF2的外角平分线的对称点Q,则点Q的轨迹是(  )
A.椭圆B.C.抛物线D.线段

分析 延长F1P,与F2Q的延长线交于M点,连接QO,根据等腰三角形“三线合一”和三角形中位线定理,结合椭圆的定义证出OQ的长恰好等于椭圆的长半轴a,得动点Q的轨迹方程为x2+y2=a2,从而解得.

解答 解:由题意,延长F1P,与F2Q的延长线交于M点,连接QO,
∵PQ是∠F2PM的平分线,且PQ⊥MF2
∴△F2MP中,|PF2|=|PM|且Q为MF2的中点,
由三角形中位线定理,得|OQ|=$\frac{1}{2}$|MF1|=$\frac{1}{2}$(|MP|+|PF1|)
∵由椭圆的定义,得|PF1|+|PF2|=2a,(2a是椭圆的长轴),可得|MP|+|PF1|=2a,
∴|OQ|=$\frac{1}{2}$(|MP|+|PF1|)=a,可得动点Q的轨迹方程为x2+y2=a2
∴点Q的轨迹为以原点为圆心,a为半径的圆.
故选:B.

点评 本题在椭圆中求动点Q的轨迹,着重考查了椭圆的定义、等腰三角形的判定和三角形中位线定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.化简:$\sqrt{1-2sin(π-2)•cos(π-2)}$得(  )
A.sin2+cos2B.cos2-sin2C.sin2-cos2D.±(cos2-sin2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,椭圆 M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,直线x=±a和y=±b所围成的矩形 A BCD的面积为$32\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若 P为椭圆M上任意一点,O为坐标原点,Q为线段OP的中点,求点Q的轨迹方程;
(Ⅲ)已知N(1,0),若过点 N的直线l交点Q的轨迹于E,F两点,且$-\frac{18}{7}≤\overrightarrow{{N}{E}}•\overrightarrow{{N}F}≤-\frac{12}{5}$,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆M:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)已知$A(-2,\sqrt{2})$,F是椭圆M的下焦点,在椭圆M上是否存在点P,使△AFP的周长最大?若存在,请求出△AFP周长的最大值,并求此时△AFP的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则PM+PF1的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若AB=1,则△ABC周长的取值范围(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{3}$,左焦点F到右准线l的距离为10,圆G:(x-1)2+y2=1.
(1)求椭圆的方程;
(2)若P是椭圆上任意一点,过点P作圆G的切线,切点为Q,过点P作右准线l的垂线,垂足为H,求$\frac{PQ}{PH}$的取值范围;
(3)是否存在以椭圆上的点M为圆心的圆M,使得过圆M上任意一点N作圆G的切线(切点为T)都满足$\frac{NF}{NT}=\sqrt{2}$?若存在,请求出圆M的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是(  )
A.$y=\frac{1}{x}$B.y=-2|x|C.$y={log_3}{x^2}$D.y=x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-kx-8在[5,+∞)上是单调递增函数,
(1)求实数k的取值范围;
(2)当k取(1)问中的最大值时,设g(x)是定义在R上的奇函数,当x>0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步练习册答案