精英家教网 > 高中数学 > 题目详情
19.从1,2,3,5四个数中随机地选取三个不同的数,则所取三个数能构成等差数列的概率是$\frac{1}{2}$.

分析 从1,2,3,5四个数中随机地选取三个不同的数,先求出基本事件总数,再列举出所取三个数能构成等差数列的情况,由此能求出所取三个数能构成等差数列的概率.

解答 解:从1,2,3,5四个数中随机地选取三个不同的数,
基本事件总数n=${C}_{4}^{3}$=4,
所取三个数能构成等差数列的情况有:(1,2,3),(1,3,5),
∴所取三个数能构成等差数列的概率:
p=$\frac{2}{4}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$A=\{x||{x-2}|<1\},B=\{y|y=\frac{2x-1}{x+1},x∈A\}$,则A∩B=(  )
A.$(\frac{1}{2},\frac{5}{4})$B.$(\frac{7}{4},3)$C.$(1,\frac{5}{4})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,过点F1的直线与C交于点P,Q.若|PF2|=|F1F2|,且3|PF1|=4|QF1|,则$\frac{b}{a}$的值为(  )
A.$\frac{3}{5}$B.$\frac{5}{7}$C.$\frac{{2\sqrt{6}}}{7}$D.$\frac{{2\sqrt{6}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,则a+2c的最小值为$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A′B′C′中,底面是等腰直角三角形,∠ACB=90°,侧棱AA′=2,BC=AC=1,D,E分别是CC′、A′B的中点.
(1)求异面直线CE与BD所成角的余弦值;
(2)在CC′上是否存在一点P,使得PE⊥平面ABD?若存在,请求出CP的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)=\left\{{\begin{array}{l}{{x^2}-x,x>0}\\{\frac{1}{2}-|{\frac{1}{2}+x}|,x≤0}\end{array}}\right.$,若方程f(x)=kx-k有两个不相等的实数根,则实数k的取值范围为$(1,+∞)∪\left\{{-\frac{1}{3}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设an=(2n+1)p,bn=(2n)p+(2n-1)p,其中p,n∈N+
(1)当p=2时,试比较an与bn的大小;
(2)当p=n时,求证:an≥bn对?n∈N+恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选科方案有10种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知某市野生动物园中有猛虎出没,三位青年为抄近路返回市区(从A点出发,沿y轴负方向走直线),决定冒险穿越野生动物园,如图,设老虎出没的区域为圆C:(x-2)2+(y-4)2=$\frac{25}{4}$所含区域,三位青年从A(0,6)到O需要40min,若三位青年在老虎出没的地区逗留时间超过15min就有生命危险.问:三位青年是否有生命危险?(假设三位青年以匀速返回市区)

查看答案和解析>>

同步练习册答案