精英家教网 > 高中数学 > 题目详情
已知直线l和圆M:x2+y2+2x=0相切于点T(-1,1),且与双曲线C:x2-y2=1相交于A,B两点,若F是AB的中点,求点F坐标.
分析:先根据点到直线的距离公式等于半径,求出切线方程,由于所求的直线与x轴平行,可根据对称性直接求出中点坐标.
解答:精英家教网解:如图
由题意可设直线l的方程为y-1=k(x+1)
∵直线与圆相切
∴d=
1
1+k2
=1
,解得k=0
∴切线方程为y=1,
根据对称性可知与x2-y2=1相交于A,B两点的中点F的坐标为(0,1).
点评:本题主要考查了中点坐标公式,以及直线的一般式方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,请考生任选2题作答.
(1)选修4-2:矩阵与变换
已知a,b∈R,若M=
-1a
b3
所对应的变换TM把直线L:2x-y=3变换为自身,求实数a,b,并求M的逆矩阵.
(2)选修4-4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

①将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
②判断直线l和圆C的位置关系.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:
(A)对任意实数k与q,直线l和圆M相切;
(B)对任意实数k与q,直线l和圆M有公共点;
(C)对任意实数q,必存在实数k,使得直线l与和圆M相切
(D)对任意实数k,必存在实数q,使得直线l与和圆M相切
其中真命题的代号是
 
.(写出所有真命题的代号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴于P,Q两点,且AP:PQ=8:5.
(1)求椭圆的离心率;
(2)已知直线l过点M(-3,0),倾斜角为
π
6
,圆C过A,Q,F三点,若直线l恰好与圆C相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:

(A)      对任意实数k与q,直线l和圆M相切;

(B)      对任意实数k与q,直线l和圆M有公共点;

(C)     对任意实数q,必存在实数k,使得直线l与和圆M相切

(D)对任意实数k,必存在实数q,使得直线l与和圆M相切

其中真命题的代号是______________(写出所有真命题的代号)

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三上学期第七次测试理科数学试卷(解析版) 题型:填空题

已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:

(A)对任意实数k与q,直线l和圆M相切;(B)对任意实数k与q,直线l和圆M有公共点;

(C)对任意实数q,必存在实数k,使得直线l与和圆M相切;

(D)对任意实数k,必存在实数q,使得直线l与和圆M相切.

其中真命题的代号是______________(写出所有真命题的代号).

 

查看答案和解析>>

同步练习册答案