精英家教网 > 高中数学 > 题目详情

设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.

(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.

(1)y=x2-1   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.
(1)求双曲线的离心率,并写出其渐近线方程;
(2)求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线轴于点
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知点A,椭圆E:的离心率为;F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线与E 相交于P,Q两点。当的面积最大时,求的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案