精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为1,公比为2的等比数列,数列{bn}的前n项和Sn=n2
(1)求数列{an}与{bn}的通项公式;
(2)求数列{
bn
an
}
的前n项和.
(1)因为数列{an}是首项为1,公比为2的等比数列,
所以数列{an}的通项公式为an=2n-1
因为数列{bn}的前n项和Sn=n2
所以当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,b1=S1=1=2×1-1,
所以数列{bn}的通项公式为bn=2n-1.
(2)由(1)可知,
bn
an
=
2n-1
2n-1

设数列{
bn
an
}
的前n项和为Tn
则    Tn=1+
3
2
+
5
4
+
7
8
+…+
2n-3
2n-2
+
2n-1
2n-1


即   
1
2
Tn=
1
2
+
3
4
+
5
8
+
7
16
+…+
2n-3
2n-1
+
2n-1
2n


1
2
Tn=1+1+
1
2
+
1
4
+
1
8
+…+
1
2n-2
-
2n-1
2n
=1+
1-(
1
2
)
n-1
1-
1
2
-
2n-1
2n
=3-
2n+3
2n

所以Tn=6-
2n+3
2n-1

故数列{
bn
an
}
的前n项和为6-
2n+3
2n-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案