精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|0≤x-1<8},C={x∈R|x<a或x>a+1}.
(1)求∁RA∩B
(2)若A∪C=R,求实数a的取值范围.

分析 (1)先求出集合A,化简集合B,根据 根据集合的运算求,(CRA)∩B;
(2)若A∪C=R,则可以比较两个集合的端点,得出参数所满足的不等式解出参数的取值范围.

解答 解:(1)由题意$\left\{\begin{array}{l}{3-x≥0}\\{7-x>0}\end{array}\right.$,解得7>x≥3,故A={x∈R|3≤x<7},
B={x∈Z|2<x<10}═{x∈Z|3,4,5,6,7,8,9},
∴(CRA)∩B={7,8,9}
(2)∵A∪C=R,C={x∈R|x<a或x>a+1}
∴$\left\{\begin{array}{l}{a≥3}\\{a+1<7}\end{array}\right.$,解得3≤a<6
∴实数a的取值范围是3≤a<6.

点评 本题考查集合关系中的参数取值问题,解题的关键是理解集合运算的意义,能借助数轴等辅助工具正确判断两个集合的关系及相应参数的范围,本题中取参数的范围是一个难点,易因为错判出错,求解时要注意验证等号能否成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx+2x-6.
(1)证明:函数f(x)在其定义域上是增函数;
(2)证明:函数f(x)有且只有一个零点;
(2)求该零点所在的一个区间,使这个区间的长度不超过$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果函数f(x)=x2+bx+c对任意实数t都有f(4-t)=f(t),那么(  )
A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,∠A、∠B、∠C所对的边为a、b、c,已知$\overrightarrow{m}$=(b,a-2c),$\overrightarrow{n}$=(cosA-2cosC,cosB)且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求$\frac{sinC}{sinA}$的值;
(2)若a=2,|$\overrightarrow{m}$|=3$\sqrt{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若对任意x∈R,$\frac{x}{{x}^{2}+2x+2}$≤a,则实数a的取值范围是a≥$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=(log2$\frac{x}{2}$)(log2$\frac{x}{4}$)的值域,其中x满足-3≤log${\;}_{\frac{1}{2}}$x≤-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,则z=-3x+y的最小值为(  )
A.-4B.-5C.-6D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.  
(2)已知a,b,c∈R+,a+b+c=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式$\frac{1}{x}$<2和|x|>$\frac{1}{3}$同时成立,则x的取值范围是(  )
A.-$\frac{1}{2}$<x<$\frac{1}{3}$B.x>$\frac{1}{2}$或x<-$\frac{1}{3}$C.x>$\frac{1}{2}$或x<$\frac{1}{3}$D.x>$\frac{1}{2}$

查看答案和解析>>

同步练习册答案