1£®ÎªÌá¸ßÐÅÏ¢ÔÚ´«ÊäÖеĿ¹¸ÉÈÅÄÜÁ¦£¬Í¨³£ÔÚÔ­ÐÅÏ¢Öа´Ò»¶¨¹æÔò¼ÓÈëÏà¹ØÊý¾Ý×é³É´«ÊäÐÅÏ¢£®É趨ԭÐÅϢΪa0a1a2£¬ai¡Ê{0£¬1}£¨i=0£¬1£¬2£©£¬´«ÊäÐÅϢΪh0a0a1a2h1£¬ÆäÖÐh0=a0¨’a1£¬h1=h0¨’a2£¬¨’ÔËËã¹æÔòΪ£º0¨’0=0£¬0¨’1=1£¬1¨’0=1£¬1¨’1=0£¬ÀýÈçÔ­ÐÅϢΪ111£¬Ôò´«ÊäÐÅϢΪ01111£®´«ÊäÐÅÏ¢ÔÚ´«Êä¹ý³ÌÖÐÊܵ½¸ÉÈÅ¿ÉÄܵ¼Ö½ÓÊÕÐÅÏ¢³ö´í£¬ÔòÏÂÁнÓÊÕÐÅÏ¢Ò»¶¨ÓÐÎóµÄÊÇ£¨¡¡¡¡£©
A£®00011B£®11001C£®10100D£®10110

·ÖÎö Ê×ÏÈÀí½â¨’µÄÔËËã¹æÔò£¬È»ºó¸÷Ñ¡ÏîÒÀ´Îͨ¹ýÄæÔËË㣬·ÖÎö¼´¿É£®

½â´ð ½â£ºAÑ¡ÏîÔ­ÐÅϢΪ001£¬Ôòh0=a0¨’a1=0¨’0=0£¬h1=h0¨’a2=0¨’1=1£¬ËùÒÔ´«ÊäÐÅϢΪ00011£¬AÑ¡ÏîÕýÈ·£»
BÑ¡ÏîÔ­ÐÅϢΪ100£¬Ôòh0=a0¨’a1=1¨’0=1£¬h1=h0¨’a2=1¨’0=1£¬ËùÒÔ´«ÊäÐÅϢΪ11001£¬BÑ¡ÏîÕýÈ·£»
CÑ¡ÏîÔ­ÐÅϢΪ010£¬Ôòh0=a0¨’a1=0¨’1=1£¬h1=h0¨’a2=1¨’0=1£¬ËùÒÔ´«ÊäÐÅϢΪ10101£¬CÑ¡Ïî²»ÕýÈ·£»
DÑ¡ÏîÔ­ÐÅϢΪ011£¬Ôòh0=a0¨’a1=0¨’1=1£¬h1=h0¨’a2=1¨’1=0£¬ËùÒÔ´«ÊäÐÅϢΪ10110£¬DÑ¡ÏîÕýÈ·£»
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²é¶ÔйæÔòµÄÔĶÁÀí½âÄÜÁ¦£¬¿¼²éÂß¼­ÍÆÀíÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈçͼËùʾ£¬ËıßÐÎABCDºÍBCEF¶¼ÊÇƽÐÐËıßÐΣ®
£¨1£©Ð´³öÓë$\overrightarrow{BC}$ÏàµÈµÄÏòÁ¿£º$\overrightarrow{AD}$£¬$\overrightarrow{FE}$£»
£¨2£©Ð´ÖÐÓë$\overrightarrow{BC}$¹²ÏßµÄÏòÁ¿£º$\overrightarrow{AD}$£¬$\overrightarrow{FE}$£¬$\overrightarrow{DA}$£¬$\overrightarrow{EF}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª|$\overrightarrow{a}$|=2£¬|$\overrightarrow{b}$|=3£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬Çó£º
£¨1£©$\overrightarrow{a}$•$\overrightarrow{b}$£»
£¨2£©$\overrightarrow{a}$2-$\overrightarrow{b}$2£»
£¨3£©£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$+3$\overrightarrow{b}$£©£»
£¨4£©|$\overrightarrow{a}$+$\overrightarrow{b}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®°Ñ-1125¡ã±íʾΪ2k¦Ð+¦Á£¨k¡ÊZ£¬0¡Ü¦Á£¼2¦Ð£©µÄÐÎʽÊÇ-8¦Ð+$\frac{7¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª·½³Ìx2+y2+£¨$\sqrt{3}$t+1£©x+ty+t2-2=0±íʾһ¸öÔ²£®
£¨1£©ÇótµÄÈ¡Öµ·¶Î§£»
£¨2£©ÈôÔ²µÄÖ±¾¶Îª6£¬ÇótµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÔ²µÄ·½³ÌΪx2+y2=4£¬¹ýµãM£¨2£¬4£©×÷Ô²µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪS£¬T£¬Ö±ÏßSTÇ¡ºÃ¾­¹ýÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãºÍÉ϶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CÓëxÖá½»ÓÚS£¬Qµã£¬ÒÑÖªµãPÂú×ã$\overrightarrow{PS}•\overrightarrow{PQ}$=0£¬µãA£¬BÔÚÍÖÔ²CÉÏÇÒ$\overrightarrow{OA}•\overrightarrow{OB}$=0£¨OΪ×ø±êÔ­µã£©£¬Çó¡÷PABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÒÑÖªÖ±½ÇÈý½ÇÐÎÖܳ¤Îª48cm£¬Ò»Èñ½Ç½»Æ½·ÖÏß·Ö¶Ô±ßΪ3£º5Á½²¿·Ö£®
£¨1£©ÇóÖ±½ÇÈý½ÇÐεÄÈý±ß³¤£»
£¨2£©ÇóÁ½Ö±½Ç±ßÔÚб±ßÉϵÄÉäÓ°µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÈýÀâ׶A-BCDÖУ¬¡÷BCDÊDZ߳¤Îª1µÄÕýÈý½ÇÐΣ¬µãAÔÚƽÃæBCDÉϵÄÉäӰΪ¡÷BCDµÄÖÐÐÄ£¬E£¬F·Ö±ðÊÇBC£¬BAµÄÖе㣬EF¡ÍFD£¬ÔòÈýÀâ׶A-BCDµÄÌå»ýΪ$\frac{\sqrt{2}}{24}$£¬Ö±ÏßABÓëƽÃæBCDËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªËÄÀâ׶P-ABCD£¬µ×ÃæABCDΪ±ß³¤Îª2¶ÔµÄÁâÐΣ¬PA¡ÍƽÃæABCD£¬¡ÏABC=60¡ã£¬E£¬F·Ö±ðÊÇBC£¬PCµÄÖе㣮
£¨1£©Åж¨AEÓëPDÊÇ·ñ´¹Ö±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôPA=2£¬Çó¶þÃæ½ÇE-AF-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸