精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有一个交点.
(1)求函数f(x)的解析式;
(2)当a>
1
2
时,若函数g(x)=
f(lnx)+k-1
lnx
在区间[e,e2]上是单调函数,求实数k的取值范围.
分析:(1)根据题目给出的f(0)=1,求出c的值,运用f(x)=f(3-x),求出函数对称轴,用函数f(x)的图象与直线x+y=0有且只有一个交点联立后由判别式等于0列式,最后联立方程组求得a、b的值,则解析式可求;
(2)把f(x)代入函数g(x),求导函数后让导函数在区间[e,e2]上恒大于0或恒小于0求解实数k的取值范围.
解答:解:(1)因为函数f(x)=ax2+bx+c,由f(0)=1,得c=1,所以f(x)=ax2+bx+1,
又f(x)=f(3-x),所以二次函数的对称轴为x=
3
2
,即-
b
2a
=
3
2
   ①
又函数f(x)的图象与直线x+y=0有且只有一个交点,联立
x+y=0
ax2+bx+1=y
得:ax2+(b+1)x+1=0
所以(b+1)2-4a=0    ②
解①②得:a=1,b=-3或a=
1
9
b=-
1
3

所以f(x)=x2-3x+1,或f(x)=
1
9
x2-
1
3
x+1

(2)当a>
1
2
时,f(x)=x2-3x+1,
g(x)=
(lnx)2-3lnx+1+k-1
lnx
=lnx+
k
lnx
-3,
g(x)=
1
x
-
k
x•ln2x
=(1-
k
ln2x
1
x

因为函数定义域为(0,+∞)所以要使函数g(x)在区间[e,e2]上是单调函数,
所以需要1-
k
ln2x
≤0
或1-
k
ln2x
≥0
在[e,e2]上恒成立,
解得k≥4或k≤1.
点评:本题考查利用导数研究函数的单调性,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案