(本小题满分14分)
(如图)设椭圆中心在坐标原点,是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.
(1)若,求的值;
(2)求四边形面积的最大值.
解答:
(Ⅰ)解:依题设得椭圆的方程为,
直线的方程分别为,. 2分
如图,设,其中,
且满足方程,
故.①
由知,得;
由在上知,得.
所以,
化简得,
解得或. 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为
,
. 9分
又,所以四边形的面积为
,
当,即当时,上式取等号.所以的最大值为. 12分
解法二:由题设,,.
设,,由①得,,
故四边形的面积为
9分
,
当时,上式取等号.所以的最大值为. 12分
解: (Ⅰ)∵为奇函数,∴
即
∴ ----------------------1分
∵的最小值为,
-----------3分
又直线的斜率为
因此, ------------5分
∴,,. -------------6分
(Ⅱ).
,列表如下:
极大 | 极小 |
所以函数的单调增区间是和. -----------9分
∵,,
∴在上的最大值是,最小值是.········12分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com