精英家教网 > 高中数学 > 题目详情
已知Sn为等差数列{an}的前n项和,a1=-2012,
S2011
2011
-
S2009
2009
=2
,则S2012=(  )
分析:由条件可求得公差d=2,由S2012=2012×a1+
2012(2012-1)
2
×d,求得结果.
解答:解:等差数列{an}中,
a1=-2012,
S2011
2011
-
S2009
2009
=2

a1+a2011
2
-
a1+a2009
2
=2,
∴公差d=2.
∴S2012=2012×a1+
2012(2012-1)
2
×d=-2012,
故选C.
点评:本题考查等差数列的前n项和公式的应用,求出公差d的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n和,若a4=-48,a9=-33,
(1)求an的通项公式;
(2)当n为何值时,Sn最小?.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)已知Sn为等差数列{an}的前n项和,且a3=S3=9
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=a2,b4=S4,求{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,若a1=-2012,
S2010
2010
-
S2004
2004
=6
,则S2013等于(  )

查看答案和解析>>

同步练习册答案