精英家教网 > 高中数学 > 题目详情
如图,均是边长为2的等边三角形,且它们所在平面互相垂直,.
(1)    求证: ||
(2)    求二面角的余弦值。.
(1)见解析.(2).
本试题主要考查了立体几何中线面平行而后二面角的求解的运用。第一问中,利用取的中点,连接
是边长为2的等边三角形  
   
 ||=    
 四边形为矩形
||
得到先面平行。
第二问中,建系如图所示:易知,
,利用法向量来求解二面角的大小。

解:(1)取的中点,连接
是边长为2的等边三角形  
   
 ||=    
 四边形为矩形
||
 ,
||  ……………………………………6分
(2)建系如图所示:易知,
………………………7分

的法向量    的法向量 
           
                 
                         ………………………. .10分
  …………………………………………11分
由图形可知,钝二面角,故二面角的余弦值为……….12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱中,中点.

(1)求证://平面
(2)求点到平面的距离;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点
(1)求证:MN⊥AB;
(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面平面分别是的中点。
求证:(Ⅰ)直线平面
(Ⅱ)平面平面。(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,是两个不同的平面,是两条不重合的直线,下列命题中正确的是(  )
A.若,则.
B.若,则.
C.若,且,则.
D.若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱中,的中点。(Ⅰ)求点C到平面的距离;(Ⅱ)若,求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面命题中错误的是
A.如果平面平面,那么平面内一定存在直线平行于平面
B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
C.如果平面平面,平面平面,那么平面
D.如果平面平面,那么平面内所有直线都垂直于平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,//平面.
(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案