精英家教网 > 高中数学 > 题目详情
已知圆C1:x2+y2-4x-2y-5=0与圆C2:x2+y2-6x-y+9=0.在平面上找一点P,过P点引两圆的切线并使它们的长都等于6
2
.求P点坐标.
考点:圆的一般方程
专题:直线与圆
分析:把圆的方程化为标准形式,求出圆心和半径,再利用切线长为
PC12-r12
=6
2
=
PC22-r22
,求出点P的坐标.
解答: 解:圆C1:x2+y2-4x-2y-5=0与圆C2:x2+y2-6x-y+9=0,即圆C1:(x-2)2+(y-1)2 =10,圆C2:(x-3)2 +(y-
1
2
2 =
1
4

故圆C1(2,1)、圆C2(3,
1
2
),半径r1=
10
,r2=
1
2

设点P(a,b),则由题意可得切线长为
PC12-r12
=6
2
=
PC22-r22
,即
(a-2)2+(b-1)2-10
=6
2
=
(a-3)2+(b-
1
2
)
2
-
1
4

(a-2)2+(b-1)2-10=72
(a-3)2+(b-
1
2
)
2
-
1
4
=72

求得
a=9.8
b=5.6
,或
a=3
b=-8
,即点P的坐标为 (9.8,5.6)或(3,-8).
点评:本题主要考查直线和圆相切的性质,两点间的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角α满足cos(α+π)=-
1
2
,则sinα的值等于(  )
A、1
B、0
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),我们把满足f(x0)=kx0的实数x0叫做函数f(x)的k倍不动点,设f(x)=x2+(2a+1)x+a2+a.
(1)若f(x)在区间[0,2]有两个相异的1倍不动点,求实数a,并求出此不动点;
(2)若对任意k≥3,f(x)都有k倍不动点,求实数a的取值范围;
(3)设m,n(m<n)为f(x)的2倍不动点,且函数f(x)在x∈[m,n]时值域为[2m,2n],求a的取值范围;
(4)函数f(x)在x∈[m,n](m<n)时单调,且值域恰为[2m,2n],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log0.5(10-ax),f(3)=-2.
(1)求a的值;
(2)求不等式f(x)≥0的解集;
(3)若f(x)-
1
2x
-m>0对于x∈[3,4]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三棱锥的三视图及直观图如图所示,E,F,G分别是A1B,B1C1,AA1的中点,AA1⊥底面ABC
(1)求四棱锥B-ACC1A1的体积;
(2)求证:B1C⊥平面A1BC1
(3)求证:EF∥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinwxcoswx+2cos2wx-1的周期为
π
2

(1)求w的值;    
(2)在△ABC中,a,b,c分别是∠ABC的对边,f(
A
2
)=1,且a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

k取什么实数时,关于x的方程(k-2)x2-2x+1=0.
(1)有两个不相等的实根;
(2)有一个实根;
(3)没有实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b均为实数,用比较证明:
a2+b2
2
≥(
a+b
2
2(当且仅当a=b时等号成立);
(2)已知x>0,y>0,x+y=1,利用(1)的结论用综合法证明:
x+
1
2
+
y+
1
2
≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥C-ABEF,底面ABEF是矩形,FA⊥平面ABC,D是棱AB的中点,点H在棱BE上,且AC=BC=
2
,AB=2,AF=3.
(1)设BH=λBE,若FH⊥平面DHC,求λ的值;
(2)在(1)的条件下,求当λ>
1
2
时,二面角D-CF-H的余弦值.

查看答案和解析>>

同步练习册答案