精英家教网 > 高中数学 > 题目详情
7.已知复数$z=\frac{{{{(1-i)}^2}}}{1+i}$(i为虚数单位),则复数z=(  )
A.1+iB.1-iC.-1+iD.-1-i

分析 利用复数的乘除运算法则化简求解即可.

解答 解:复数$z=\frac{{{{(1-i)}^2}}}{1+i}$=$\frac{-2i}{1+i}$=$\frac{-2i(1-i)}{(1+i)(1-i)}$=-1-i.
故选:D.

点评 本题考查复数的代数形式的混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.将单位圆经过伸缩变换:φ:$\left\{\begin{array}{l}{x′=λx}\\{y′=μy}\end{array}\right.$(λ>0,μ>0)得到曲线C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1
(1)求实数λ,μ的值;
(2)以原点O 为极点,x 轴为极轴建立极坐标系,将曲线C 上任意一点到极点的距离ρ(ρ≥0)?表示为对应极角θ(0≤θ<2π)的函数,并探求θ为何值时,ρ取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:方程x2-mx+1=0无实数解;命题q:椭圆$\frac{x^2}{m}+{y^2}=1$焦点在x轴上;若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x≤π时,f(x)=0.则f($\frac{23π}{6}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且向量$\overrightarrow a=(n,S_n),\overrightarrow b=(4,n+3)$共线;等比数列{bn}中b1=a1,b2=a3
(1)求证:数列{an}是等差数列;
(2)若数列{cn}的通项公式为cn=$\frac{1}{{n{a_n}}}+n{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=2sin(2x+\frac{π}{3})$的图象(  )
A.关于原点对称B.关于点($\frac{π}{6}$,0)对称
C.关于y轴对称D.关于直线$x=\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知cosα=$\frac{1}{4}$,且α∈($\frac{3π}{2}$,2π),则cos( α+$\frac{π}{2}$)=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果已知sinα•cosα<0,sinα•tanα<0,那么角$\frac{α}{2}$的终边在(  )
A.第一或第二象限B.第一或第三象限C.第二或第四象限D.第四或第三象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=x${\;}^{-\frac{4}{3}}$-1的零点为±1.

查看答案和解析>>

同步练习册答案