精英家教网 > 高中数学 > 题目详情
在△ABC中,若tanAtanB>1,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、无法确定
分析:利用两角和的正切函数公式表示出tan(A+B),根据A与B的范围以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A与B都为锐角,然后判断出tan(A+B)小于0,得到A+B为钝角即C为锐角,所以得到此三角形为锐角三角形.
解答:解:因为A和B都为三角形中的内角,
由tanAtanB>1,得到1-tanAtanB<0,
且得到tanA>0,tanB>0,即A,B为锐角,
所以tan(A+B)=
tanA+tanB
1-tanAtanB
<0,
则A+B∈(
π
2
,π),即C都为锐角,
所以△ABC是锐角三角形.
故答案为:锐角三角形
点评:此题考查了三角形的形状判断,用的知识有两角和与差的正切函数公式.解本题的思路是:根据tanAtanB>1和A与B都为三角形的内角得到tanA和tanB都大于0,即A和B都为锐角,进而根据两角和与差的正切函数公式得到tan(A+B)的值为负数,进而得到A+B的范围,判断出C也为锐角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-
1
2
,则cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-2,则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取得的点到O距离大小1的概率为1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形,其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=2tanB=3tanC,则cosA的值为
 

查看答案和解析>>

同步练习册答案