精英家教网 > 高中数学 > 题目详情
6.已知{an}为等差数列,且a1+a3=8,a2+a4=12
(1)求{an}通项公式;
(2)记{an}的前n项和为Sn,若a1,ak+1,Sk+3成等比数列,求正整数k的值.

分析 (1)设等差数列{an}的公差等于d,则由题意可得$\left\{\begin{array}{l}{2{a}_{1}+2d=8}\\{2{a}_{1}+4d=12}\end{array}\right.$,解得 a1=2,d=2,从而得到{an}的通项公式;
(2)由(1)可得 {an}的前n项和为Sn =$\frac{n({a}_{1}+{a}_{n})}{2}$=n(n+1),再由ak+12=a1Sk+3 ,求得正整数k的值.

解答 解:(1)设等差数列{an}的公差等于d,
则由题意可得$\left\{\begin{array}{l}{2{a}_{1}+2d=8}\\{2{a}_{1}+4d=12}\end{array}\right.$,解得a1=2,d=2,
∴{an}的通项公式an =2+2(n-1)=2n;
(2)由(1)可得 {an}的前n项和为Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=n(n+1),
∵a1,ak+1,Sk+3成等比数列,∴ak+12=a1Sk+3
∴4(k+1)2 =2(k+3)(k+4),
解得k=5或k=-2(舍去),
故k=5.

点评 本题主要考查等比数列的定义和性质,等差数列的通项公式和求和公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.$\frac{\sqrt{1-2sin40°•cos40°}}{sin40°-\sqrt{1-si{n}^{2}40°}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设k∈Z,下列四个命题中正确的有③④.(填所有正确命题的序号)
①若sinα+sinβ=2,则α=β=2kπ+$\frac{π}{2}$;
②若tanα+$\frac{1}{tanα}$=2,则α=2kπ+$\frac{π}{4}$;
③若sinα+cosα=1,则sin3α+cos3α=1;
④若sin3α+cos3α=1,则sinα+cosα=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)写出函数f(x)的最小正周期及其单调递减区间;
(2)求f(x)的解析式;
(3)若将函数f(x)的图象平移Φ个单位,得到一个偶函数的图象,求|Φ|的最小值;
(4)求函数y=f(x-3)+f(2x+7)(x∈[0,2])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y∈R,且$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,则z=x+2y的最大值等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=1+ax-2(a>0,且a≠1)恒过定点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在[a,b]上有2个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=-x2+(m+2)x-1和g(x)=2x+3是[1,5]上的“关联函数”,则实数m的取值范围为(4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}+2co{s}^{2}\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我县某中学为了配备高一新生中寄宿生的用品,招生前随机抽取部分准高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)如果上学路上所需时间不少于40分钟的学生应寄宿,且该校计划招生1800名,请估计新生中应有多少名学生寄宿;
(3)若不安排寄宿的话,请估计所有学生上学的平均耗时(用组中值代替各组数据的平均值).

查看答案和解析>>

同步练习册答案