精英家教网 > 高中数学 > 题目详情

平行四边形中,为折线,把折起,使平面平面,连接

(1)求证:
(2)求二面角 的余弦值.

(1)参考解析;(2)

解析试题分析:(1)直线与直线垂直的证明通过转化为证明直线与平面垂直,由于通过翻折为两个垂直的平面所以只需证明直线AB垂直与两个平面的交线BD即可,通过已知条件利用余弦定理即可得到直角.
(2)求二面角的问题通常就是建立空间直角坐标系,根据BD与DC垂直来建立.通过写出相应点的坐标,以及相应的平面内的向量,确定两平面的法向量,并求出法向量的夹角,再判断法向量的夹角与二面角的大小是相等还是互补,即可得到结论.
试题解析:(1)在中,
所以 所以
因为平面平面,所以平面,所以;…3分
(2)在四面体ABCD中,以D为原点,DB为轴,DC为轴,过D垂直于平面BDC的射线为轴,建立如图的空间直角坐标系. 

则D(0,0,0),B(,0,0),C(0,1,0),A(,0,1)
设平面ABC的法向量为

得:再设平面DAC的法向量为
得:               
所以即二面角B-AC-D的余弦值是         
考点:1.线线垂直的判定.2.面面垂直性质.3.二面角的求法.4.空间坐标系的应用.5.法向量的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.
 
(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCDA1B1C1D1中,AA1AD=1,ECD的中点.

(1)求证:B1EAD1.
(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(3)若二面角AB1EA1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱的所有棱长都为4,D为的中点.

(1)求证:⊥平面
(2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

同步练习册答案