精英家教网 > 高中数学 > 题目详情

【题目】一袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则1只红球和1只黄球的概率为__________2只球颜色相同的概率为________.

【答案】

【解析】

由题,求得基本事件的总数15,再求得1只红球和1只黄球的及2只颜色相同包含的基本事件的个数,根据古典概型及其概率的计算公式,即可求解.

由题意,一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只篮球,从中1次随机摸出2只球,则基本事件的总数为种情况.

1只红球和1只黄球包含的基本事件个数为,所以1只红球和1只黄球的概率为;

又由2只颜色相同包含的基本事件个数为,所以2只颜色相同的概率为.

故答案为:,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过动点作直线的垂线,垂足为,且满足,其中为坐标原点,动点的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)过点作与轴不平行的直线,交曲线两点,点,记分别为的斜率,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树林的边界是直线(如图所在的直线),一只兔子在河边喝水时发现了一只狼,兔子和狼分别位于的垂线上的点点和点处,为正常数),若兔子沿方向以速度向树林逃跑,同时狼沿线段方向以速度进行追击(为正常数),若狼到达处的时间不多于兔子到达M处的时间,狼就会吃掉兔子.

1)求兔子的所有不幸点(即可能被狼吃掉的点)的区域面积

2)若兔子要想不被狼吃掉,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为4,其图象关于直线对称,给出下面四个结论:

①函数在区间上先增后减;②将函数的图象向右平移个单位后得到的图象关于原点对称;③点是函数图象的一个对称中心;④函数上的最大值为1.其中正确的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校参加期中考试的高一学生中随机抽取100名得到这100名学生语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.

1)求图中的值;

2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

3)已知学生的语文成绩为123分,现从成绩在中的学生中随机抽取2人参加演讲赛,求学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若,判断上的单调性;

(Ⅱ)求函数上的最小值;

(III)当时,是否存在正整数n,使恒成立?若存在,求出n的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学发展史知识测验后,甲、乙、丙三人对成绩进行预测:

甲说:我的成绩比乙高;

乙说:丙的成绩比我和甲的都高;

丙说:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,的周长为8,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为为坐标原点),且,求的取值范围.

查看答案和解析>>

同步练习册答案