精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在三棱柱中,侧面底面ABC,,且为AC中点。
(I)                   证明:平面ABC;
(II)                 求直线与平面所成角的正弦值;
(III)               在上是否存在一点E,使得平面,若不存在,说明理由;若存在,确定点E的位置。
(Ⅰ)见解析(Ⅱ),(Ⅲ)E的中点
(Ⅰ)证明:因为,且OAC的中点,

所以.                                                                                   ………………1分
又由题意可知,平面平面,交线为,且平面
所以平面.                                                                      ………………4分
(Ⅱ)如图,以O为原点,所在直线分别为xyz轴建立空间直角坐标系.
由题意可知,
所以得:
则有:                                     ………………6分
设平面的一个法向量为,则有
,令,得
所以.                                          ………………7分
.                                     ………………9分
因为直线与平面所成角和向量所成锐角互余,所以.                                                                                            ………………10分
(Ⅲ)设                                            ………………11分
,得
所以         ………………12分
平面,得 ,                                        ………………13分

即存在这样的点EE的中点.                           ………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

异面直线公垂线段,线段分别在上移动,求中点轨迹

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设与平面所成的角为,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,的垂直平分线分别交AB,AC于E,E(图一),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图二)

(1)若F是AB的中点,求证:平面ACD⊥平面ADE
(2)P是AC上任意一点,求证:平面ACD⊥平面PBE
(3)P是AC上一点,且AC⊥平面PBE,求二面角P-BE-C的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用一个平面去截正方体,对于截面的边界,有以下图形:
①钝角三角形;②直角梯形;③菱形;④正五边形;⑤正六边形。
则不可能的图形的选项为(   )
A.③④⑤B.①②⑤C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,长方体ABCD中,AB=BC=4,E的中点,为下底面正方形的中心.求:(I)二面角CAB的正切值;
(II)异面直线AB所成角的正切值;
(III)三棱锥——ABE的体积.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体,的棱长为1,的中点,则下列五个命题:
①点到平面,的距离为
②直线与平面,所成的角等于
③空间四边形,在正方体六个面内形成六个射影,其面积的最小值是
所成的角
⑤二面角的大小为 
其中真命题是                     。(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A、B、C在球心为O的球面上,的内角A、B、C所对边的长分别为a、b、c,且,球心O到截面ABC的距离为,则该球的表面积为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是AC
BC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).
(Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由
(Ⅱ) 求二面角B-AC-D的平面角的正切值.
 
图(1)                  图(2)

查看答案和解析>>

同步练习册答案