精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= 的定义域为(
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

【答案】B
【解析】解:函数f(x)= 有意义,
只需1﹣lg(x﹣1)≥0,且x﹣1>0,
即为lg(x﹣1)≤1且x>1,
解得1<x≤11,
则定义域为(1,11].
故选:B.
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),| |=1.
(1)求 夹角;
(2)若 垂直,求点C的坐标;
(3)求| + + |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.

分数

甲班频数

5

6

4

4

1

一般频数

1

3

6

5

5

(1)由以下统计数据填写下面列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

附:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)当a=2时,求A∪B
(2)当BA时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,E,F,P,Q分别是BC,C1D1 , AD1 , BD的中点.

(1)求证:PQ∥平面DCC1D1
(2)求PQ的长;
(3)求证:EF∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形的面积,若asinA+bsinB=csinC,且S= ,则对△ABC的形状的精确描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|x+bx+c,给出下列4个命题:
①b=0,c>0时,方程f(x)=0只有一个实数根;
②c=0时,y=f(x)是奇函数;
③y=f(x)的图象关于点(0,c)对称;
④方程f(x)=0至多有2个不相等的实数根.
上述命题中的所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线斜率为1,求函数上的最值;

(2)令,若时, 恒成立,求实数的取值范围;

(3)当时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,已知a1=1,a2=2,an+2= (k∈N*).
(1)求数列{an}的通项公式;
(2)求满足2an+1=an+an+2的正整数n的值;
(3)设数列{an}的前n项和为Sn , 问是否存在正整数m,n,使得S2n=mS2n1?若存在,求出所有的正整数对(m,n);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案